Cargando…

Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodi...

Descripción completa

Detalles Bibliográficos
Autores principales: Senanayak, Satyaprasad P., Yang, Bingyan, Thomas, Tudor H., Giesbrecht, Nadja, Huang, Wenchao, Gann, Eliot, Nair, Bhaskaran, Goedel, Karl, Guha, Suchi, Moya, Xavier, McNeill, Christopher R., Docampo, Pablo, Sadhanala, Aditya, Friend, Richard H., Sirringhaus, Henning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271592/
https://www.ncbi.nlm.nih.gov/pubmed/28138550
http://dx.doi.org/10.1126/sciadv.1601935
_version_ 1782501380581228544
author Senanayak, Satyaprasad P.
Yang, Bingyan
Thomas, Tudor H.
Giesbrecht, Nadja
Huang, Wenchao
Gann, Eliot
Nair, Bhaskaran
Goedel, Karl
Guha, Suchi
Moya, Xavier
McNeill, Christopher R.
Docampo, Pablo
Sadhanala, Aditya
Friend, Richard H.
Sirringhaus, Henning
author_facet Senanayak, Satyaprasad P.
Yang, Bingyan
Thomas, Tudor H.
Giesbrecht, Nadja
Huang, Wenchao
Gann, Eliot
Nair, Bhaskaran
Goedel, Karl
Guha, Suchi
Moya, Xavier
McNeill, Christopher R.
Docampo, Pablo
Sadhanala, Aditya
Friend, Richard H.
Sirringhaus, Henning
author_sort Senanayak, Satyaprasad P.
collection PubMed
description Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI(3)). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μ(FET)) of 0.5 cm(2)/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA(+) cations, and thermal vibrations of the lead halide inorganic cages.
format Online
Article
Text
id pubmed-5271592
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-52715922017-01-30 Understanding charge transport in lead iodide perovskite thin-film field-effect transistors Senanayak, Satyaprasad P. Yang, Bingyan Thomas, Tudor H. Giesbrecht, Nadja Huang, Wenchao Gann, Eliot Nair, Bhaskaran Goedel, Karl Guha, Suchi Moya, Xavier McNeill, Christopher R. Docampo, Pablo Sadhanala, Aditya Friend, Richard H. Sirringhaus, Henning Sci Adv Research Articles Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI(3)). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μ(FET)) of 0.5 cm(2)/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA(+) cations, and thermal vibrations of the lead halide inorganic cages. American Association for the Advancement of Science 2017-01-27 /pmc/articles/PMC5271592/ /pubmed/28138550 http://dx.doi.org/10.1126/sciadv.1601935 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Senanayak, Satyaprasad P.
Yang, Bingyan
Thomas, Tudor H.
Giesbrecht, Nadja
Huang, Wenchao
Gann, Eliot
Nair, Bhaskaran
Goedel, Karl
Guha, Suchi
Moya, Xavier
McNeill, Christopher R.
Docampo, Pablo
Sadhanala, Aditya
Friend, Richard H.
Sirringhaus, Henning
Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title_full Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title_fullStr Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title_full_unstemmed Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title_short Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
title_sort understanding charge transport in lead iodide perovskite thin-film field-effect transistors
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5271592/
https://www.ncbi.nlm.nih.gov/pubmed/28138550
http://dx.doi.org/10.1126/sciadv.1601935
work_keys_str_mv AT senanayaksatyaprasadp understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT yangbingyan understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT thomastudorh understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT giesbrechtnadja understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT huangwenchao understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT ganneliot understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT nairbhaskaran understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT goedelkarl understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT guhasuchi understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT moyaxavier understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT mcneillchristopherr understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT docampopablo understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT sadhanalaaditya understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT friendrichardh understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors
AT sirringhaushenning understandingchargetransportinleadiodideperovskitethinfilmfieldeffecttransistors