Cargando…
Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network
Hippocampal network activity is generated by a complex interplay between excitatory pyramidal cells and inhibitory interneurons. Although much is known about the molecular properties of excitatory synapses on pyramidal cells, comparatively little is known about excitatory synapses on interneurons. H...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5272845/ https://www.ncbi.nlm.nih.gov/pubmed/28067903 http://dx.doi.org/10.1038/nn.4471 |
_version_ | 1782501600678379520 |
---|---|
author | Polepalli, Jai S. Wu, Hemmings Goswami, Debanjan Halpern, Casey H. Südhof, Thomas C. Malenka, Robert C. |
author_facet | Polepalli, Jai S. Wu, Hemmings Goswami, Debanjan Halpern, Casey H. Südhof, Thomas C. Malenka, Robert C. |
author_sort | Polepalli, Jai S. |
collection | PubMed |
description | Hippocampal network activity is generated by a complex interplay between excitatory pyramidal cells and inhibitory interneurons. Although much is known about the molecular properties of excitatory synapses on pyramidal cells, comparatively little is known about excitatory synapses on interneurons. Here, we show that conditional deletion of the postsynaptic cell adhesion molecule neuroligin-3 in parvalbumin interneurons causes a decrease in NMDA receptor-mediated postsynaptic currents and an increase in presynaptic glutamate release probability due to selectively impairing the inhibition of glutamate release by presynaptic Group III metabotropic glutamate receptors. As a result, the neuroligin-3 deletion altered network activity by reducing gamma oscillations and sharp wave ripples; changes associated with a decrease in extinction of contextual fear memories. These results demonstrate that neuroligin-3 specifies the properties of excitatory synapses on parvalbumin-containing interneurons by a retrograde trans-synaptic mechanism and suggest a novel molecular pathway whereby neuroligin-3 mutations contribute to neuropsychiatric disorders. |
format | Online Article Text |
id | pubmed-5272845 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-52728452017-07-09 Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network Polepalli, Jai S. Wu, Hemmings Goswami, Debanjan Halpern, Casey H. Südhof, Thomas C. Malenka, Robert C. Nat Neurosci Article Hippocampal network activity is generated by a complex interplay between excitatory pyramidal cells and inhibitory interneurons. Although much is known about the molecular properties of excitatory synapses on pyramidal cells, comparatively little is known about excitatory synapses on interneurons. Here, we show that conditional deletion of the postsynaptic cell adhesion molecule neuroligin-3 in parvalbumin interneurons causes a decrease in NMDA receptor-mediated postsynaptic currents and an increase in presynaptic glutamate release probability due to selectively impairing the inhibition of glutamate release by presynaptic Group III metabotropic glutamate receptors. As a result, the neuroligin-3 deletion altered network activity by reducing gamma oscillations and sharp wave ripples; changes associated with a decrease in extinction of contextual fear memories. These results demonstrate that neuroligin-3 specifies the properties of excitatory synapses on parvalbumin-containing interneurons by a retrograde trans-synaptic mechanism and suggest a novel molecular pathway whereby neuroligin-3 mutations contribute to neuropsychiatric disorders. 2017-01-09 2017-02 /pmc/articles/PMC5272845/ /pubmed/28067903 http://dx.doi.org/10.1038/nn.4471 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Polepalli, Jai S. Wu, Hemmings Goswami, Debanjan Halpern, Casey H. Südhof, Thomas C. Malenka, Robert C. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title | Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title_full | Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title_fullStr | Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title_full_unstemmed | Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title_short | Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
title_sort | modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5272845/ https://www.ncbi.nlm.nih.gov/pubmed/28067903 http://dx.doi.org/10.1038/nn.4471 |
work_keys_str_mv | AT polepallijais modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork AT wuhemmings modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork AT goswamidebanjan modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork AT halperncaseyh modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork AT sudhofthomasc modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork AT malenkarobertc modulationofexcitationonparvalbumininterneuronsbyneuroligin3regulatesthehippocampalnetwork |