Cargando…
Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from (18)F-FDG PET/CT images
BACKGROUND: This study aimed to compare one state-of-the-art deep learning method and four classical machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer (NSCLC) from (18)F-FDG PET/CT images. Another objective was to compare the discriminative powe...
Autores principales: | Wang, Hongkai, Zhou, Zongwei, Li, Yingci, Chen, Zhonghua, Lu, Peiou, Wang, Wenzhi, Liu, Wanyu, Yu, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5272853/ https://www.ncbi.nlm.nih.gov/pubmed/28130689 http://dx.doi.org/10.1186/s13550-017-0260-9 |
Ejemplares similares
-
Predictive Role of the Number of (18)F-FDG-Positive Lymph Nodes Detected by PET/CT for Pre-Treatment Evaluation of Locally Advanced Gastric Cancer
por: Wang, Xin, et al.
Publicado: (2016) -
Evaluation of Mediastinal Lymph Nodes in Sarcoidosis, Sarcoid Reaction, and Malignant Lymph Nodes Using CT and FDG-PET/CT
por: Koo, Hyun Jung, et al.
Publicado: (2015) -
Evaluation of mediastinal lymph nodes using (18)F-FDG PET-CT scan and its histopathologic correlation
por: Kumar, Arvind, et al.
Publicado: (2011) -
18F-FDG PET/CT Image Deep Learning Predicts Colon Cancer Survival
por: Tian, Mohan, et al.
Publicado: (2023) -
(18)F-FDG PET–CT Diagnosis of Tuberculosis in Celiac Lymph Nodes
por: Mao, Xi Bao, et al.
Publicado: (2020)