Cargando…
Auditory spatial representations of the world are compressed in blind humans
Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5272902/ https://www.ncbi.nlm.nih.gov/pubmed/27837259 http://dx.doi.org/10.1007/s00221-016-4823-1 |
_version_ | 1782501609012461568 |
---|---|
author | Kolarik, Andrew J. Pardhan, Shahina Cirstea, Silvia Moore, Brian C. J. |
author_facet | Kolarik, Andrew J. Pardhan, Shahina Cirstea, Silvia Moore, Brian C. J. |
author_sort | Kolarik, Andrew J. |
collection | PubMed |
description | Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music, and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals. |
format | Online Article Text |
id | pubmed-5272902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-52729022017-02-10 Auditory spatial representations of the world are compressed in blind humans Kolarik, Andrew J. Pardhan, Shahina Cirstea, Silvia Moore, Brian C. J. Exp Brain Res Research Article Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music, and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals. Springer Berlin Heidelberg 2016-11-11 2017 /pmc/articles/PMC5272902/ /pubmed/27837259 http://dx.doi.org/10.1007/s00221-016-4823-1 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article Kolarik, Andrew J. Pardhan, Shahina Cirstea, Silvia Moore, Brian C. J. Auditory spatial representations of the world are compressed in blind humans |
title | Auditory spatial representations of the world are compressed in blind humans |
title_full | Auditory spatial representations of the world are compressed in blind humans |
title_fullStr | Auditory spatial representations of the world are compressed in blind humans |
title_full_unstemmed | Auditory spatial representations of the world are compressed in blind humans |
title_short | Auditory spatial representations of the world are compressed in blind humans |
title_sort | auditory spatial representations of the world are compressed in blind humans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5272902/ https://www.ncbi.nlm.nih.gov/pubmed/27837259 http://dx.doi.org/10.1007/s00221-016-4823-1 |
work_keys_str_mv | AT kolarikandrewj auditoryspatialrepresentationsoftheworldarecompressedinblindhumans AT pardhanshahina auditoryspatialrepresentationsoftheworldarecompressedinblindhumans AT cirsteasilvia auditoryspatialrepresentationsoftheworldarecompressedinblindhumans AT moorebriancj auditoryspatialrepresentationsoftheworldarecompressedinblindhumans |