Cargando…
Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection
In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an a...
Autores principales: | Marchi, Erik, Vesperini, Fabio, Squartini, Stefano, Schuller, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5274684/ https://www.ncbi.nlm.nih.gov/pubmed/28182121 http://dx.doi.org/10.1155/2017/4694860 |
Ejemplares similares
-
Novelty detection in rover-based planetary surface images using autoencoders
por: Stefanuk, Braden, et al.
Publicado: (2022) -
OutlierNets: Highly Compact Deep Autoencoder Network Architectures for On-Device Acoustic Anomaly Detection
por: Abbasi, Saad, et al.
Publicado: (2021) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks
por: Esmaeili, Fatemeh, et al.
Publicado: (2023) -
Using autoencoders as a weight initialization method on deep neural networks for disease detection
por: Ferreira, Mafalda Falcão, et al.
Publicado: (2020)