Cargando…

Effects of Tibolone on the Central Nervous System: Clinical and Experimental Approaches

Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto-Almazán, Rodolfo, Segura-Uribe, Julia J., Farfán-García, Eunice D., Guerra-Araiza, Christian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278195/
https://www.ncbi.nlm.nih.gov/pubmed/28191467
http://dx.doi.org/10.1155/2017/8630764
Descripción
Sumario:Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (via BIREME), Ovid Global Health, SCOPUS, Scielo, and PsycINFO (ProQuest Research Library) electronic databases were searched for the results of controlled clinical trials on peri- and postmenopausal women published from 1990 to September 2016. Also, this paper reviews experimental studies performed to analyze neuroprotective effects, cognitive deficits, neuroplasticity, oxidative stress, and stroke using TIB. Although there are few studies on the effect of this hormone in the CNS, it has been reported that TIB decreases lipid peroxidation levels and improves memory and learning. TIB has important neuroprotective effects that could prevent the risk of neurodegenerative diseases in postmenopausal women as well as the benefits of HRT in counteracting hot flashes, improving mood, and libido. Some reports have found that TIB delays cognitive impairment in various models of neuronal damage. It also modifies brain plasticity since it acts as an endocrine modulator regulating neurotransmitters, Tau phosphorylation, and decreasing neuronal death. Finally, its antioxidant effects have also been reported in different animal models.