Cargando…
Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task
Functional connectivity (FC) analysis with data collected as continuous tasks and activation analysis using data from block-design paradigms are two main methods to investigate the task-induced brain activation. If the concatenated data of task blocks extracted from the block-design paradigm could p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278200/ https://www.ncbi.nlm.nih.gov/pubmed/28191030 http://dx.doi.org/10.1155/2017/4198430 |
_version_ | 1782502605472137216 |
---|---|
author | Zhu, Yang Cheng, Lin He, Naying Yang, Yang Ling, Huawei Ayaz, Hasan Tong, Shanbao Sun, Junfeng Fu, Yi |
author_facet | Zhu, Yang Cheng, Lin He, Naying Yang, Yang Ling, Huawei Ayaz, Hasan Tong, Shanbao Sun, Junfeng Fu, Yi |
author_sort | Zhu, Yang |
collection | PubMed |
description | Functional connectivity (FC) analysis with data collected as continuous tasks and activation analysis using data from block-design paradigms are two main methods to investigate the task-induced brain activation. If the concatenated data of task blocks extracted from the block-design paradigm could provide equivalent FC information to that derived from continuous task data, it would shorten the data collection time and simplify experimental procedures, and the already collected data of block-design paradigms could be reanalyzed from the perspective of FC. Despite being used in many studies, such a hypothesis of equivalence has not yet been tested from multiple perspectives. In this study, we collected fMRI blood-oxygen-level-dependent signals from 24 healthy subjects during a continuous task session as well as in block-design task sessions. We compared concatenated task blocks and continuous task data in terms of region of interest- (ROI-) based FC, seed-based FC, and brain network topology during a short motor task. According to our results, the concatenated data was not significantly different from the continuous data in multiple aspects, indicating the potential of using concatenated data to estimate task-state FC in short motor tasks. However, even under appropriate experimental conditions, the interpretation of FC results based on concatenated data should be cautious and take the influence due to inherent information loss during concatenation into account. |
format | Online Article Text |
id | pubmed-5278200 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-52782002017-02-12 Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task Zhu, Yang Cheng, Lin He, Naying Yang, Yang Ling, Huawei Ayaz, Hasan Tong, Shanbao Sun, Junfeng Fu, Yi Comput Math Methods Med Research Article Functional connectivity (FC) analysis with data collected as continuous tasks and activation analysis using data from block-design paradigms are two main methods to investigate the task-induced brain activation. If the concatenated data of task blocks extracted from the block-design paradigm could provide equivalent FC information to that derived from continuous task data, it would shorten the data collection time and simplify experimental procedures, and the already collected data of block-design paradigms could be reanalyzed from the perspective of FC. Despite being used in many studies, such a hypothesis of equivalence has not yet been tested from multiple perspectives. In this study, we collected fMRI blood-oxygen-level-dependent signals from 24 healthy subjects during a continuous task session as well as in block-design task sessions. We compared concatenated task blocks and continuous task data in terms of region of interest- (ROI-) based FC, seed-based FC, and brain network topology during a short motor task. According to our results, the concatenated data was not significantly different from the continuous data in multiple aspects, indicating the potential of using concatenated data to estimate task-state FC in short motor tasks. However, even under appropriate experimental conditions, the interpretation of FC results based on concatenated data should be cautious and take the influence due to inherent information loss during concatenation into account. Hindawi Publishing Corporation 2017 2017-01-16 /pmc/articles/PMC5278200/ /pubmed/28191030 http://dx.doi.org/10.1155/2017/4198430 Text en Copyright © 2017 Yang Zhu et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhu, Yang Cheng, Lin He, Naying Yang, Yang Ling, Huawei Ayaz, Hasan Tong, Shanbao Sun, Junfeng Fu, Yi Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title | Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title_full | Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title_fullStr | Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title_full_unstemmed | Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title_short | Comparison of Functional Connectivity Estimated from Concatenated Task-State Data from Block-Design Paradigm with That of Continuous Task |
title_sort | comparison of functional connectivity estimated from concatenated task-state data from block-design paradigm with that of continuous task |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278200/ https://www.ncbi.nlm.nih.gov/pubmed/28191030 http://dx.doi.org/10.1155/2017/4198430 |
work_keys_str_mv | AT zhuyang comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT chenglin comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT henaying comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT yangyang comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT linghuawei comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT ayazhasan comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT tongshanbao comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT sunjunfeng comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask AT fuyi comparisonoffunctionalconnectivityestimatedfromconcatenatedtaskstatedatafromblockdesignparadigmwiththatofcontinuoustask |