Cargando…
Chaoticons described by nonlocal nonlinear Schrödinger equation
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only c...
Autores principales: | Zhong, Lanhua, Li, Yuqi, Chen, Yong, Hong, Weiyi, Hu, Wei, Guo, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278363/ https://www.ncbi.nlm.nih.gov/pubmed/28134268 http://dx.doi.org/10.1038/srep41438 |
Ejemplares similares
-
Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation
por: Liu, Wei, et al.
Publicado: (2018) -
Stationary solutions and invariant tori for a class of nonlinear nonlocal Schrödinger equations
por: Jona-Lasinio, G
Publicado: (1994) -
Multiple lump and rogue wave for time fractional resonant nonlinear Schrödinger equation under parabolic law with weak nonlocal nonlinearity
por: Rizvi, Syed T. R., et al.
Publicado: (2022) -
Defocusing nonlinear Schrödinger equations
por: Dodson, Benjamin
Publicado: (2019) -
Schrödinger equations in nonlinear systems
por: Liu, Wu-Ming, et al.
Publicado: (2019)