Cargando…
Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA
[Image: see text] An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278497/ https://www.ncbi.nlm.nih.gov/pubmed/27983843 http://dx.doi.org/10.1021/acs.jpcb.6b08764 |
_version_ | 1782502651766767616 |
---|---|
author | Hayatshahi, Hamed S. Roe, Daniel R. Galindo-Murillo, Rodrigo Hall, Kathleen B. Cheatham, Thomas E. |
author_facet | Hayatshahi, Hamed S. Roe, Daniel R. Galindo-Murillo, Rodrigo Hall, Kathleen B. Cheatham, Thomas E. |
author_sort | Hayatshahi, Hamed S. |
collection | PubMed |
description | [Image: see text] An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. |
format | Online Article Text |
id | pubmed-5278497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-52784972017-01-31 Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA Hayatshahi, Hamed S. Roe, Daniel R. Galindo-Murillo, Rodrigo Hall, Kathleen B. Cheatham, Thomas E. J Phys Chem B [Image: see text] An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. American Chemical Society 2016-12-16 2017-01-26 /pmc/articles/PMC5278497/ /pubmed/27983843 http://dx.doi.org/10.1021/acs.jpcb.6b08764 Text en Copyright © 2016 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Hayatshahi, Hamed S. Roe, Daniel R. Galindo-Murillo, Rodrigo Hall, Kathleen B. Cheatham, Thomas E. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title | Computational Assessment of Potassium and Magnesium
Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title_full | Computational Assessment of Potassium and Magnesium
Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title_fullStr | Computational Assessment of Potassium and Magnesium
Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title_full_unstemmed | Computational Assessment of Potassium and Magnesium
Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title_short | Computational Assessment of Potassium and Magnesium
Ion Binding to a Buried Pocket in GTPase-Associating Center RNA |
title_sort | computational assessment of potassium and magnesium
ion binding to a buried pocket in gtpase-associating center rna |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278497/ https://www.ncbi.nlm.nih.gov/pubmed/27983843 http://dx.doi.org/10.1021/acs.jpcb.6b08764 |
work_keys_str_mv | AT hayatshahihameds computationalassessmentofpotassiumandmagnesiumionbindingtoaburiedpocketingtpaseassociatingcenterrna AT roedanielr computationalassessmentofpotassiumandmagnesiumionbindingtoaburiedpocketingtpaseassociatingcenterrna AT galindomurillorodrigo computationalassessmentofpotassiumandmagnesiumionbindingtoaburiedpocketingtpaseassociatingcenterrna AT hallkathleenb computationalassessmentofpotassiumandmagnesiumionbindingtoaburiedpocketingtpaseassociatingcenterrna AT cheathamthomase computationalassessmentofpotassiumandmagnesiumionbindingtoaburiedpocketingtpaseassociatingcenterrna |