Cargando…
Status of surface modification techniques for artificial hip implants
Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective tec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278906/ https://www.ncbi.nlm.nih.gov/pubmed/28228866 http://dx.doi.org/10.1080/14686996.2016.1240575 |
_version_ | 1782502685735387136 |
---|---|
author | Ghosh, Subir Abanteriba, Sylvester |
author_facet | Ghosh, Subir Abanteriba, Sylvester |
author_sort | Ghosh, Subir |
collection | PubMed |
description | Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants. |
format | Online Article Text |
id | pubmed-5278906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-52789062017-02-22 Status of surface modification techniques for artificial hip implants Ghosh, Subir Abanteriba, Sylvester Sci Technol Adv Mater Bio-Inspired and Biomedical Materials Surface modification techniques have been developed significantly in the last couple of decades for enhanced tribological performance of artificial hip implants. Surface modification techniques improve biological, chemical and mechanical properties of implant surfaces. Some of the most effective techniques, namely surface texturing, surface coating, and surface grafting, are applied to reduce the friction and wear of artificial implants. This article reviews the status of the developments of surface modification techniques and their effects on commonly used artificial joint implants. This study focused only on artificial hip joint prostheses research of the last 10 years. A total of 27 articles were critically reviewed and categorized according to surface modification technique. The literature reveals that modified surfaces exhibit reduced friction and enhanced wear resistance of the contact surfaces. However, the wear rates are still noticeable in case of surface texturing and surface coating. The associated vortex flow aids to release entrapped wear debris and thus increase the wear particles generation in case of textured surfaces. The earlier delamination of coating materials due to poor adhesion and graphitization transformation has limited the use of coating techniques. Moreover, the produced wear debris has adverse effects on biological fluid. Conversely, the surface grafting technique provides phospholipid like layer that exhibited lower friction and almost zero wear rates even after a longer period of friction and wear test. The findings suggest that further investigations are required to identify the role of surface grafting on film formation and heat resistance ability under physiological hip joint conditions for improved performance and longevity of hip implants. Taylor & Francis 2016-11-25 /pmc/articles/PMC5278906/ /pubmed/28228866 http://dx.doi.org/10.1080/14686996.2016.1240575 Text en © 2016 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Bio-Inspired and Biomedical Materials Ghosh, Subir Abanteriba, Sylvester Status of surface modification techniques for artificial hip implants |
title | Status of surface modification techniques for artificial hip implants |
title_full | Status of surface modification techniques for artificial hip implants |
title_fullStr | Status of surface modification techniques for artificial hip implants |
title_full_unstemmed | Status of surface modification techniques for artificial hip implants |
title_short | Status of surface modification techniques for artificial hip implants |
title_sort | status of surface modification techniques for artificial hip implants |
topic | Bio-Inspired and Biomedical Materials |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5278906/ https://www.ncbi.nlm.nih.gov/pubmed/28228866 http://dx.doi.org/10.1080/14686996.2016.1240575 |
work_keys_str_mv | AT ghoshsubir statusofsurfacemodificationtechniquesforartificialhipimplants AT abanteribasylvester statusofsurfacemodificationtechniquesforartificialhipimplants |