Cargando…

SimGen: A General Simulation Method for Large Systems

SimGen is a stand-alone computer program that reads a script of commands to represent complex macromolecules, including proteins and nucleic acids, in a structural hierarchy that can then be viewed using an integral graphical viewer or animated through a high-level application programming interface...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor, William R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282398/
https://www.ncbi.nlm.nih.gov/pubmed/27771481
http://dx.doi.org/10.1016/j.jmb.2016.10.011
Descripción
Sumario:SimGen is a stand-alone computer program that reads a script of commands to represent complex macromolecules, including proteins and nucleic acids, in a structural hierarchy that can then be viewed using an integral graphical viewer or animated through a high-level application programming interface in C++. Structural levels in the hierarchy range from α-carbon or phosphate backbones through secondary structure to domains, molecules, and multimers with each level represented in an identical data structure that can be manipulated using the application programming interface. Unlike most coarse-grained simulation approaches, the higher-level objects represented in SimGen can be soft, allowing the lower-level objects that they contain to interact directly. The default motion simulated by SimGen is a Brownian-like diffusion that can be set to occur across all levels of representation in the hierarchy. Links can also be defined between objects, which, when combined with large high-level random movements, result in an effective search strategy for constraint satisfaction, including structure prediction from predicted pairwise distances. The implementation of SimGen makes use of the hierarchic data structure to avoid unnecessary calculation, especially for collision detection, allowing it to be simultaneously run and viewed on a laptop computer while simulating large systems of over 20,000 objects. It has been used previously to model complex molecular interactions including the motion of a myosin-V dimer “walking” on an actin fibre, RNA stem-loop packing, and the simulation of cell motion and aggregation. Several extensions to this original functionality are described.