Cargando…

Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating

We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interfero...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, George Y., Wu, Xuan, Liu, Xiaokong, Lancaster, David G., Monro, Tanya M., Xu, Haolan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282560/
https://www.ncbi.nlm.nih.gov/pubmed/28139745
http://dx.doi.org/10.1038/srep41895
Descripción
Sumario:We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 10(5) cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm(2). The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively.