Cargando…

High-dimensional assessment of B-cell responses to quadrivalent meningococcal conjugate and plain polysaccharide vaccine

BACKGROUND: Neisseria meningitidis is a globally important cause of meningitis and septicaemia. Twelve capsular groups of meningococci are known, and quadrivalent vaccines against four of these (A, C, W and Y) are available as plain-polysaccharide and protein-polysaccharide conjugate vaccines. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Connor, Daniel, Clutterbuck, Elizabeth A., Thompson, Amber J., Snape, Matthew D., Ramasamy, Maheshi N., Kelly, Dominic F., Pollard, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282650/
https://www.ncbi.nlm.nih.gov/pubmed/28137280
http://dx.doi.org/10.1186/s13073-017-0400-x
Descripción
Sumario:BACKGROUND: Neisseria meningitidis is a globally important cause of meningitis and septicaemia. Twelve capsular groups of meningococci are known, and quadrivalent vaccines against four of these (A, C, W and Y) are available as plain-polysaccharide and protein-polysaccharide conjugate vaccines. Here we apply contemporary methods to describe B-cell responses to meningococcal polysaccharide and conjugate vaccines. METHODS: Twenty adults were randomly assigned to receive either a meningococcal plain-polysaccharide or conjugate vaccine; one month later all received the conjugate vaccine. Blood samples were taken pre-vaccination and 7, 21 and 28 days after vaccination; B-cell responses were assessed by ELISpot, serum bactericidal assay, flow cytometry and gene expression microarray. RESULTS: Seven days after an initial dose of either vaccine, a gene expression signature characteristic of plasmablasts was detectable. The frequency of newly generated plasma cells (CXCR3(+)HLA-DR(+)) and the expression of transcripts derived from IGKC and IGHG2 correlated with immunogenicity. Notably, using an independent dataset, the expression of glucosamine (N-acetyl)-6-sulfatase was found to reproducibly correlate with the magnitude of immune response. Transcriptomic and flow cytometric data revealed depletion of switched memory B cells following plain-polysaccharide vaccine. CONCLUSIONS: These data describe distinct gene signatures associated with the production of high-avidity antibody and a plain-polysaccharide-specific signature, possibly linked to polysaccharide-induced hyporesponsiveness. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-017-0400-x) contains supplementary material, which is available to authorized users.