Cargando…
Perceptual quality prediction on authentically distorted images using a bag of features approach
Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually...
Autores principales: | Ghadiyaram, Deepti, Bovik, Alan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283082/ https://www.ncbi.nlm.nih.gov/pubmed/28129417 http://dx.doi.org/10.1167/17.1.32 |
Ejemplares similares
-
No-Reference Quality Assessment of Authentically Distorted Images Based on Local and Global Features
por: Varga, Domonkos
Publicado: (2022) -
Introspective inference counteracts perceptual distortion
por: Mihali, Andra, et al.
Publicado: (2023) -
Multivariate Statistical Approach to Image Quality Tasks
por: Gupta, Praful, et al.
Publicado: (2018) -
Perceptual and Conceptual Distortions of Implicit Hand Maps
por: Longo, Matthew R., et al.
Publicado: (2015) -
Chronic Study on Brainwave Authentication in a Real-Life Setting: An LSTM-Based Bagging Approach
por: Yang, Liuyin, et al.
Publicado: (2021)