Cargando…
Using Triplet Ordering Preferences for Estimating Causal Effects in the Analysis of Gene Expression Data
Triplet ordering preferences are used to perform Monte Carlo sampling of the posterior causal orderings originating from the analysis of gene-expression experiments involving observation as well as, usually few, interventions, like knock-outs. The performance of this sampling approach is compared to...
Autores principales: | Hartmann, Alexander K., Nuel, Grégory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283676/ https://www.ncbi.nlm.nih.gov/pubmed/28141825 http://dx.doi.org/10.1371/journal.pone.0170514 |
Ejemplares similares
-
Joint estimation of causal effects from observational and intervention gene expression data
por: Rau, Andrea, et al.
Publicado: (2013) -
Identification of marginal causal relationships in gene networks from observational and interventional expression data
por: Monneret, Gilles, et al.
Publicado: (2017) -
Pattern statistics on Markov chains and sensitivity to parameter estimation
por: Nuel, Grégory
Publicado: (2006) -
Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies
por: Jeanmougin, Marine, et al.
Publicado: (2010) -
Higher-order temporal network effects through triplet evolution
por: Yao, Qing, et al.
Publicado: (2021)