Cargando…
Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations
The models in statistical physics such as an Ising model offer a convenient way to characterize stationary activity of neural populations. Such stationary activity of neurons may be expected for recordings from in vitro slices or anesthetized animals. However, modeling activity of cortical circuitri...
Autores principales: | Donner, Christian, Obermayer, Klaus, Shimazaki, Hideaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5283755/ https://www.ncbi.nlm.nih.gov/pubmed/28095421 http://dx.doi.org/10.1371/journal.pcbi.1005309 |
Ejemplares similares
-
Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction
por: Lukarski, Dushko, et al.
Publicado: (2020) -
Canonical neural networks perform active inference
por: Isomura, Takuya, et al.
Publicado: (2022) -
State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data
por: Shimazaki, Hideaki, et al.
Publicado: (2012) -
Approximate kernel reconstruction for time-varying networks
por: Ditzler, Gregory, et al.
Publicado: (2019) -
Nonlinear optimal control of a mean-field model of neural population dynamics
por: Salfenmoser, Lena, et al.
Publicado: (2022)