Cargando…
Evolutionary Algorithm Based Feature Optimization for Multi-Channel EEG Classification
The most BCI systems that rely on EEG signals employ Fourier based methods for time-frequency decomposition for feature extraction. The band-limited multiple Fourier linear combiner is well-suited for such band-limited signals due to its real-time applicability. Despite the improved performance of t...
Autores principales: | Wang, Yubo, Veluvolu, Kalyana C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5285364/ https://www.ncbi.nlm.nih.gov/pubmed/28203141 http://dx.doi.org/10.3389/fnins.2017.00028 |
Ejemplares similares
-
Time-frequency analysis of band-limited EEG with BMFLC and Kalman filter for BCI applications
por: Wang, Yubo, et al.
Publicado: (2013) -
EEG Channel-Selection Method for Epileptic-Seizure Classification Based on Multi-Objective Optimization
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2020) -
Eye-blink artifact removal from single channel EEG with k-means and SSA
por: Maddirala, Ajay Kumar, et al.
Publicado: (2021) -
SSA with CWT and k-Means for Eye-Blink Artifact Removal from Single-Channel EEG Signals
por: Maddirala, Ajay Kumar, et al.
Publicado: (2022) -
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
por: Han, Jiuqi, et al.
Publicado: (2018)