Cargando…
Patient-Specific Predictive Modeling Using Random Forests: An Observational Study for the Critically Ill
BACKGROUND: With a large-scale electronic health record repository, it is feasible to build a customized patient outcome prediction model specifically for a given patient. This approach involves identifying past patients who are similar to the present patient and using their data to train a personal...
Autor principal: | Lee, Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5285604/ https://www.ncbi.nlm.nih.gov/pubmed/28096065 http://dx.doi.org/10.2196/medinform.6690 |
Ejemplares similares
-
Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study
por: Kim, Junetae, et al.
Publicado: (2020) -
Intensive Care Unit–Specific Virtual Reality for Critically Ill Patients With COVID-19: Multicenter Randomized Controlled Trial
por: Vlake, Johan H, et al.
Publicado: (2022) -
Nutrition delivery across hospitalisation in critically ill patients with COVID-19: An observational study of the Australian experience
por: Chapple, Lee-anne S., et al.
Publicado: (2023) -
The lonely glutamine tree in the middle of the infinite critically ill forest
por: Briassoulis, Panagiotis, et al.
Publicado: (2021) -
Using Smartwatches to Observe Changes in Activity During Recovery From Critical Illness Following COVID-19 Critical Care Admission: 1-Year, Multicenter Observational Study
por: Hunter, Alex, et al.
Publicado: (2022)