Cargando…
Enhancing gene regulatory network inference through data integration with markov random fields
A gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challen...
Autores principales: | Banf, Michael, Rhee, Seung Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286517/ https://www.ncbi.nlm.nih.gov/pubmed/28145456 http://dx.doi.org/10.1038/srep41174 |
Ejemplares similares
-
Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks
por: Sîrbu, Alina, et al.
Publicado: (2015) -
Probabilistic edge inference of gene networks with markov random field-based bayesian learning
por: Huang, Yu-Jyun, et al.
Publicado: (2022) -
Learning a Markov Logic network for supervised gene regulatory network inference
por: Brouard, Céline, et al.
Publicado: (2013) -
Quantum Enhanced Inference in Markov Logic Networks
por: Wittek, Peter, et al.
Publicado: (2017) -
Approximate Inference for Hierarchical Gaussian Markov Random Fields Models
por: Rue, H, et al.
Publicado: (2005)