Cargando…
Improving polygenic risk prediction from summary statistics by an empirical Bayes approach
Polygenic risk scores (PRS) from genome-wide association studies (GWAS) are increasingly used to predict disease risks. However some included variants could be false positives and the raw estimates of effect sizes from them may be subject to selection bias. In addition, the standard PRS approach req...
Autores principales: | So, Hon-Cheong, Sham, Pak C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286518/ https://www.ncbi.nlm.nih.gov/pubmed/28145530 http://dx.doi.org/10.1038/srep41262 |
Ejemplares similares
-
Improved polygenic prediction by Bayesian multiple regression on summary statistics
por: Lloyd-Jones, Luke R., et al.
Publicado: (2019) -
Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits
por: Wu, Tian, et al.
Publicado: (2022) -
Overestimated prediction using polygenic prediction derived from summary statistics
por: Park, David Keetae, et al.
Publicado: (2023) -
Pathway-Specific Polygenic Scores Improve Cross-Ancestry Prediction of Psychosis and Clinical Outcomes
por: Tubbs, Justin D., et al.
Publicado: (2023) -
A Unifying Framework for Evaluating the Predictive Power of Genetic Variants Based on the Level of Heritability Explained
por: So, Hon-Cheong, et al.
Publicado: (2010)