Cargando…
Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI
Parkinson’s disease (PD) is characterized by pathological changes within several deep structures of the brain, including the substantia nigra and caudate nucleus. However, changes in interstitial fluid (ISF) flow and the microstructure of the interstitial space (ISS) in the caudate nucleus in PD hav...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JKL International LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287382/ https://www.ncbi.nlm.nih.gov/pubmed/28203477 http://dx.doi.org/10.14336/AD.2016.0625 |
_version_ | 1782504151441211392 |
---|---|
author | Lv, Deyong Li, Jingbo Li, Hongfu Fu, Yu Wang, Wei |
author_facet | Lv, Deyong Li, Jingbo Li, Hongfu Fu, Yu Wang, Wei |
author_sort | Lv, Deyong |
collection | PubMed |
description | Parkinson’s disease (PD) is characterized by pathological changes within several deep structures of the brain, including the substantia nigra and caudate nucleus. However, changes in interstitial fluid (ISF) flow and the microstructure of the interstitial space (ISS) in the caudate nucleus in PD have not been reported. In this study, we used tracer-based magnetic resonance imaging (MRI) to quantitatively investigate the alterations in ISS and visualize ISF flow in the caudate nucleus in a rotenone-induced rat model of PD treated with and without madopar. In the rotenone-induced rat model, the ISF flow was slowed and the tortuosity of the ISS was significantly decreased. Administration of madopar partially prevented these changes of ISS and ISF. Therefore, our data suggest that tracer-based MRI can be used to monitor the parameters related to ISF flow and ISS microstructure. It is a promising technique to investigate the microstructure and functional changes in the deep brain regions of PD. |
format | Online Article Text |
id | pubmed-5287382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | JKL International LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-52873822017-02-15 Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI Lv, Deyong Li, Jingbo Li, Hongfu Fu, Yu Wang, Wei Aging Dis Short Communication Parkinson’s disease (PD) is characterized by pathological changes within several deep structures of the brain, including the substantia nigra and caudate nucleus. However, changes in interstitial fluid (ISF) flow and the microstructure of the interstitial space (ISS) in the caudate nucleus in PD have not been reported. In this study, we used tracer-based magnetic resonance imaging (MRI) to quantitatively investigate the alterations in ISS and visualize ISF flow in the caudate nucleus in a rotenone-induced rat model of PD treated with and without madopar. In the rotenone-induced rat model, the ISF flow was slowed and the tortuosity of the ISS was significantly decreased. Administration of madopar partially prevented these changes of ISS and ISF. Therefore, our data suggest that tracer-based MRI can be used to monitor the parameters related to ISF flow and ISS microstructure. It is a promising technique to investigate the microstructure and functional changes in the deep brain regions of PD. JKL International LLC 2017-02-01 /pmc/articles/PMC5287382/ /pubmed/28203477 http://dx.doi.org/10.14336/AD.2016.0625 Text en Copyright: © 2017 Lv, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/2.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Short Communication Lv, Deyong Li, Jingbo Li, Hongfu Fu, Yu Wang, Wei Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title | Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title_full | Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title_fullStr | Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title_full_unstemmed | Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title_short | Imaging and Quantitative Analysis of the Interstitial Space in the Caudate Nucleus in a Rotenone-Induced Rat Model of Parkinson’s Disease Using Tracer-based MRI |
title_sort | imaging and quantitative analysis of the interstitial space in the caudate nucleus in a rotenone-induced rat model of parkinson’s disease using tracer-based mri |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287382/ https://www.ncbi.nlm.nih.gov/pubmed/28203477 http://dx.doi.org/10.14336/AD.2016.0625 |
work_keys_str_mv | AT lvdeyong imagingandquantitativeanalysisoftheinterstitialspaceinthecaudatenucleusinarotenoneinducedratmodelofparkinsonsdiseaseusingtracerbasedmri AT lijingbo imagingandquantitativeanalysisoftheinterstitialspaceinthecaudatenucleusinarotenoneinducedratmodelofparkinsonsdiseaseusingtracerbasedmri AT lihongfu imagingandquantitativeanalysisoftheinterstitialspaceinthecaudatenucleusinarotenoneinducedratmodelofparkinsonsdiseaseusingtracerbasedmri AT fuyu imagingandquantitativeanalysisoftheinterstitialspaceinthecaudatenucleusinarotenoneinducedratmodelofparkinsonsdiseaseusingtracerbasedmri AT wangwei imagingandquantitativeanalysisoftheinterstitialspaceinthecaudatenucleusinarotenoneinducedratmodelofparkinsonsdiseaseusingtracerbasedmri |