Cargando…

Mertk gene expression and photoreceptor outer segment phagocytosis by cultured rat bone marrow mesenchymal stem cells

BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotential stem cells that have been used for a broad spectrum of indications. Several investigations have used BM-MSCs to promote photoreceptor survival and suggested that BM-MSCs are a potential source of cell replacement therapy for...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Rong-mei, Hong, Jing, Jin, Ying, Sun, Yu-zhao, Sun, Yi-qian, Zhang, Pei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Vision 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5287449/
https://www.ncbi.nlm.nih.gov/pubmed/28210098
Descripción
Sumario:BACKGROUND: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotential stem cells that have been used for a broad spectrum of indications. Several investigations have used BM-MSCs to promote photoreceptor survival and suggested that BM-MSCs are a potential source of cell replacement therapy for some forms of retinal degeneration. PURPOSE: To investigate the expression of the MER proto-oncogene, tyrosine kinase (Mertk), involved in the disruption of RPE phagocytosis and the onset of autosomal recessive retinitis pigmentosa in rat BM-MSCs and to compare phagocytosis of the photoreceptor outer segment (POS) by BM-MSCs and RPE cells in vitro. METHODS: MSCs were isolated from the bone marrow of Brown Norway rats. Reverse transcription-PCR (RT–PCR) and western blot analyses were used to examine the expression of Mertk. The phagocytized POS was detected with double fluorescent labeling, transmission electron microscopy, and scanning electron microscopy. RESULTS: Mertk expression did not differ among the first three passages of BM-MSCs. Mertk gene expression was greater in the BM-MSCs than the RPE cells. Mertk protein expression in the BM-MSCs was similar to that in the RPE cells in the primary passage and was greater than that in the RPE cells in the other two passages. BM-MSCs at the first three passages phagocytized the POS more strongly than the RPE cells. The process of BM-MSC phagocytosis was similar to that of the RPE cells. CONCLUSIONS: BM-MSCs may be an effective cell source for treating retinal degeneration in terms of phagocytosis of the POS.