Cargando…

New insights into the unfolded protein response in stem cells

The unfolded protein response (UPR) is an evolutionarily conserved adaptive mechanism to increase cell survival under endoplasmic reticulum (ER) stress conditions. The UPR is critical for maintaining cell homeostasis under physiological and pathological conditions. The vital functions of the UPR in...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yanzhou, Cheung, Hoi Hung, Tu, JiaJie, Miu, Kai Kei, Chan, Wai Yee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288239/
https://www.ncbi.nlm.nih.gov/pubmed/27304053
http://dx.doi.org/10.18632/oncotarget.9833
Descripción
Sumario:The unfolded protein response (UPR) is an evolutionarily conserved adaptive mechanism to increase cell survival under endoplasmic reticulum (ER) stress conditions. The UPR is critical for maintaining cell homeostasis under physiological and pathological conditions. The vital functions of the UPR in development, metabolism and immunity have been demonstrated in several cell types. UPR dysfunction activates a variety of pathologies, including cancer, inflammation, neurodegenerative disease, metabolic disease and immune disease. Stem cells with the special ability to self-renew and differentiate into various somatic cells have been demonstrated to be present in multiple tissues. These cells are involved in development, tissue renewal and certain disease processes. Although the role and regulation of the UPR in somatic cells has been widely reported, the function of the UPR in stem cells is not fully known, and the roles and functions of the UPR are dependent on the stem cell type. Therefore, in this article, the potential significances of the UPR in stem cells, including embryonic stem cells, tissue stem cells, cancer stem cells and induced pluripotent cells, are comprehensively reviewed. This review aims to provide novel insights regarding the mechanisms associated with stem cell differentiation and cancer pathology.