Cargando…

Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome

OBJECTIVE: To identify the molecular basis and elucidate the pathogenesis of a fatal congenital myasthenic syndrome. METHODS: We performed clinical electrophysiology studies, exome and Sanger sequencing, and analyzed functional consequences of the identified mutation. RESULTS: Clinical electrophysio...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Xin‐Ming, Scola, Rosana H., Lorenzoni, Paulo J., Kay, Cláudia S. K., Werneck, Lineu C., Brengman, Joan, Selcen, Duygu, Engel, Andrew G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288468/
https://www.ncbi.nlm.nih.gov/pubmed/28168212
http://dx.doi.org/10.1002/acn3.387
_version_ 1782504334348517376
author Shen, Xin‐Ming
Scola, Rosana H.
Lorenzoni, Paulo J.
Kay, Cláudia S. K.
Werneck, Lineu C.
Brengman, Joan
Selcen, Duygu
Engel, Andrew G.
author_facet Shen, Xin‐Ming
Scola, Rosana H.
Lorenzoni, Paulo J.
Kay, Cláudia S. K.
Werneck, Lineu C.
Brengman, Joan
Selcen, Duygu
Engel, Andrew G.
author_sort Shen, Xin‐Ming
collection PubMed
description OBJECTIVE: To identify the molecular basis and elucidate the pathogenesis of a fatal congenital myasthenic syndrome. METHODS: We performed clinical electrophysiology studies, exome and Sanger sequencing, and analyzed functional consequences of the identified mutation. RESULTS: Clinical electrophysiology studies of the patient revealed several‐fold potentiation of the evoked muscle action potential by high frequency nerve stimulation pointing to a presynaptic defect. Exome sequencing identified a homozygous c.340delA frameshift mutation in synaptobrevin 1 (SYB1), one of the three SNARE proteins essential for synaptic vesicle exocytosis. Analysis of both human spinal cord gray matter and normal human muscle revealed expression of the SYB1A and SYB1D isoforms, predicting expression of one or both isoforms in the motor nerve terminal. The identified mutation elongates the intravesicular C‐terminus of the A isoform from 5 to 71, and of the D isoform from 4 to 31 residues. Transfection of either mutant isoform into bovine chromaffin cells markedly reduces depolarization‐evoked exocytosis, and transfection of either mutant isoform into HEK cells significantly decreases expression of either mutant compared to wild type. INTERPRETATION: The mutation is pathogenic because elongation of the intravesicular C‐terminus of the A and D isoforms increases the energy required to move their C‐terminus into the synaptic vesicle membrane, a key step for fusion of the synaptic vesicle with the presynaptic membrane, and because it is predicted to reduce expression of either isoform in the nerve terminal.
format Online
Article
Text
id pubmed-5288468
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-52884682017-02-06 Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome Shen, Xin‐Ming Scola, Rosana H. Lorenzoni, Paulo J. Kay, Cláudia S. K. Werneck, Lineu C. Brengman, Joan Selcen, Duygu Engel, Andrew G. Ann Clin Transl Neurol Research Articles OBJECTIVE: To identify the molecular basis and elucidate the pathogenesis of a fatal congenital myasthenic syndrome. METHODS: We performed clinical electrophysiology studies, exome and Sanger sequencing, and analyzed functional consequences of the identified mutation. RESULTS: Clinical electrophysiology studies of the patient revealed several‐fold potentiation of the evoked muscle action potential by high frequency nerve stimulation pointing to a presynaptic defect. Exome sequencing identified a homozygous c.340delA frameshift mutation in synaptobrevin 1 (SYB1), one of the three SNARE proteins essential for synaptic vesicle exocytosis. Analysis of both human spinal cord gray matter and normal human muscle revealed expression of the SYB1A and SYB1D isoforms, predicting expression of one or both isoforms in the motor nerve terminal. The identified mutation elongates the intravesicular C‐terminus of the A isoform from 5 to 71, and of the D isoform from 4 to 31 residues. Transfection of either mutant isoform into bovine chromaffin cells markedly reduces depolarization‐evoked exocytosis, and transfection of either mutant isoform into HEK cells significantly decreases expression of either mutant compared to wild type. INTERPRETATION: The mutation is pathogenic because elongation of the intravesicular C‐terminus of the A and D isoforms increases the energy required to move their C‐terminus into the synaptic vesicle membrane, a key step for fusion of the synaptic vesicle with the presynaptic membrane, and because it is predicted to reduce expression of either isoform in the nerve terminal. John Wiley and Sons Inc. 2017-01-16 /pmc/articles/PMC5288468/ /pubmed/28168212 http://dx.doi.org/10.1002/acn3.387 Text en © 2017 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Research Articles
Shen, Xin‐Ming
Scola, Rosana H.
Lorenzoni, Paulo J.
Kay, Cláudia S. K.
Werneck, Lineu C.
Brengman, Joan
Selcen, Duygu
Engel, Andrew G.
Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title_full Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title_fullStr Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title_full_unstemmed Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title_short Novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
title_sort novel synaptobrevin‐1 mutation causes fatal congenital myasthenic syndrome
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288468/
https://www.ncbi.nlm.nih.gov/pubmed/28168212
http://dx.doi.org/10.1002/acn3.387
work_keys_str_mv AT shenxinming novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT scolarosanah novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT lorenzonipauloj novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT kayclaudiask novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT wernecklineuc novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT brengmanjoan novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT selcenduygu novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome
AT engelandrewg novelsynaptobrevin1mutationcausesfatalcongenitalmyasthenicsyndrome