Cargando…

Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy

A fully automatic method for detection and quantification of ischemic lesions in diffusion-weighted MR images of neonatal hypoxic ischemic encephalopathy (HIE) is presented. Ischemic lesions are manually segmented by two independent observers in 1.5 T data from 20 subjects and an automatic algorithm...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, Keelin, van der Aa, Niek E., Negro, Simona, Groenendaal, Floris, de Vries, Linda S., Viergever, Max A., Boylan, Geraldine B., Benders, Manon J.N.L., Išgum, Ivana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288491/
https://www.ncbi.nlm.nih.gov/pubmed/28180081
http://dx.doi.org/10.1016/j.nicl.2017.01.005
_version_ 1782504335467347968
author Murphy, Keelin
van der Aa, Niek E.
Negro, Simona
Groenendaal, Floris
de Vries, Linda S.
Viergever, Max A.
Boylan, Geraldine B.
Benders, Manon J.N.L.
Išgum, Ivana
author_facet Murphy, Keelin
van der Aa, Niek E.
Negro, Simona
Groenendaal, Floris
de Vries, Linda S.
Viergever, Max A.
Boylan, Geraldine B.
Benders, Manon J.N.L.
Išgum, Ivana
author_sort Murphy, Keelin
collection PubMed
description A fully automatic method for detection and quantification of ischemic lesions in diffusion-weighted MR images of neonatal hypoxic ischemic encephalopathy (HIE) is presented. Ischemic lesions are manually segmented by two independent observers in 1.5 T data from 20 subjects and an automatic algorithm using a random forest classifier is developed and trained on the annotations of observer 1. The algorithm obtains a median sensitivity and specificity of 0.72 and 0.99 respectively. F1-scores are calculated per subject for algorithm performance (median = 0.52) and observer 2 performance (median = 0.56). A paired t-test on the F1-scores shows no statistical difference between the algorithm and observer 2 performances. The method is applied to a larger dataset including 54 additional subjects scanned at both 1.5 T and 3.0 T. The algorithm findings are shown to correspond well with the injury pattern noted by clinicians in both 1.5 T and 3.0 T data and to have a strong relationship with outcome. The results of the automatic method are condensed to a single score for each subject which has significant correlation with an MR score assigned by experienced clinicians (p < 0.0001). This work represents a quantitative method of evaluating diffusion-weighted MR images in neonatal HIE and a first step in the development of an automatic system for more in-depth analysis and prognostication.
format Online
Article
Text
id pubmed-5288491
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-52884912017-02-08 Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy Murphy, Keelin van der Aa, Niek E. Negro, Simona Groenendaal, Floris de Vries, Linda S. Viergever, Max A. Boylan, Geraldine B. Benders, Manon J.N.L. Išgum, Ivana Neuroimage Clin Regular Article A fully automatic method for detection and quantification of ischemic lesions in diffusion-weighted MR images of neonatal hypoxic ischemic encephalopathy (HIE) is presented. Ischemic lesions are manually segmented by two independent observers in 1.5 T data from 20 subjects and an automatic algorithm using a random forest classifier is developed and trained on the annotations of observer 1. The algorithm obtains a median sensitivity and specificity of 0.72 and 0.99 respectively. F1-scores are calculated per subject for algorithm performance (median = 0.52) and observer 2 performance (median = 0.56). A paired t-test on the F1-scores shows no statistical difference between the algorithm and observer 2 performances. The method is applied to a larger dataset including 54 additional subjects scanned at both 1.5 T and 3.0 T. The algorithm findings are shown to correspond well with the injury pattern noted by clinicians in both 1.5 T and 3.0 T data and to have a strong relationship with outcome. The results of the automatic method are condensed to a single score for each subject which has significant correlation with an MR score assigned by experienced clinicians (p < 0.0001). This work represents a quantitative method of evaluating diffusion-weighted MR images in neonatal HIE and a first step in the development of an automatic system for more in-depth analysis and prognostication. Elsevier 2017-01-11 /pmc/articles/PMC5288491/ /pubmed/28180081 http://dx.doi.org/10.1016/j.nicl.2017.01.005 Text en © 2017 The Authors. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Murphy, Keelin
van der Aa, Niek E.
Negro, Simona
Groenendaal, Floris
de Vries, Linda S.
Viergever, Max A.
Boylan, Geraldine B.
Benders, Manon J.N.L.
Išgum, Ivana
Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title_full Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title_fullStr Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title_full_unstemmed Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title_short Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy
title_sort automatic quantification of ischemic injury on diffusion-weighted mri of neonatal hypoxic ischemic encephalopathy
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288491/
https://www.ncbi.nlm.nih.gov/pubmed/28180081
http://dx.doi.org/10.1016/j.nicl.2017.01.005
work_keys_str_mv AT murphykeelin automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT vanderaanieke automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT negrosimona automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT groenendaalfloris automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT devrieslindas automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT viergevermaxa automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT boylangeraldineb automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT bendersmanonjnl automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy
AT isgumivana automaticquantificationofischemicinjuryondiffusionweightedmriofneonatalhypoxicischemicencephalopathy