Cargando…

Short-term monocular occlusion produces changes in ocular dominance by a reciprocal modulation of interocular inhibition

Ocular dominance can be modulated by short-term monocular deprivation. This changes the contribution that each eye makes to binocular vision, an example of adult cortical neuroplasticity. Optical imaging in primates and psychophysics in humans suggest these neuroplastic changes occur in V1. Here we...

Descripción completa

Detalles Bibliográficos
Autores principales: Chadnova, Eva, Reynaud, Alexandre, Clavagnier, Simon, Hess, Robert F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288724/
https://www.ncbi.nlm.nih.gov/pubmed/28150723
http://dx.doi.org/10.1038/srep41747
Descripción
Sumario:Ocular dominance can be modulated by short-term monocular deprivation. This changes the contribution that each eye makes to binocular vision, an example of adult cortical neuroplasticity. Optical imaging in primates and psychophysics in humans suggest these neuroplastic changes occur in V1. Here we use brain imaging (MEG) in normal adults to better understand the nature of these neuroplastic changes. The results suggest that short-term monocular deprivation, whether it be by an opaque or translucent patch, modulates dichoptic inhibitory interactions in a reciprocal fashion; the unpatched eye is inhibited, the patched eye is released from inhibition. These observations locate the neuroplastic changes to a level of visual processing where there are interocular inhibitory interactions prior to binocular combination and help to explain why both binocular rivalry and fusional tasks reveal them.