Cargando…
A feature selection method based on multiple kernel learning with expression profiles of different types
BACKGROUND: With the development of high-throughput technology, the researchers can acquire large number of expression data with different types from several public databases. Because most of these data have small number of samples and hundreds or thousands features, how to extract informative featu...
Autores principales: | Du, Wei, Cao, Zhongbo, Song, Tianci, Li, Ying, Liang, Yanchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288949/ https://www.ncbi.nlm.nih.gov/pubmed/28184251 http://dx.doi.org/10.1186/s13040-017-0124-x |
Ejemplares similares
-
Evaluation of threshold selection methods for adaptive kernel density estimation in disease mapping
por: Ruckthongsook, Warangkana, et al.
Publicado: (2018) -
Computational Analysis of Specific MicroRNA Biomarkers for Noninvasive Early Cancer Detection
por: Song, Tianci, et al.
Publicado: (2017) -
Heterogeneous multiple kernel learning for breast cancer outcome evaluation
por: Yu, Xingheng, et al.
Publicado: (2020) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data
por: Tao, Mingxin, et al.
Publicado: (2019)