Cargando…
Mapping and classifying molecules from a high-throughput structural database
High-throughput computational materials design promises to greatly accelerate the process of discovering new materials and compounds, and of optimizing their properties. The large databases of structures and properties that result from computational searches, as well as the agglomeration of data of...
Autores principales: | De, Sandip, Musil, Felix, Ingram, Teresa, Baldauf, Carsten, Ceriotti, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289135/ https://www.ncbi.nlm.nih.gov/pubmed/28203290 http://dx.doi.org/10.1186/s13321-017-0192-4 |
Ejemplares similares
-
Machine learning for the structure–energy–property landscapes of molecular crystals
por: Musil, Félix, et al.
Publicado: (2017) -
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Machine learning unifies the modeling of materials and molecules
por: Bartók, Albert P., et al.
Publicado: (2017) -
A chemical–genetic interaction map of small molecules using high‐throughput imaging in cancer cells
por: Breinig, Marco, et al.
Publicado: (2015) -
A pipeline for high throughput detection and mapping of SNPs from EST databases
por: Anithakumari, A. M., et al.
Publicado: (2010)