Cargando…
A support vector machine model provides an accurate transcript-level-based diagnostic for major depressive disorder
Major depressive disorder (MDD) is a critical cause of morbidity and disability with an economic cost of hundreds of billions of dollars each year, necessitating more effective treatment strategies and novel approaches to translational research. A notable barrier in addressing this public health thr...
Autores principales: | Yu, J S, Xue, A Y, Redei, E E, Bagheri, N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290347/ https://www.ncbi.nlm.nih.gov/pubmed/27779627 http://dx.doi.org/10.1038/tp.2016.198 |
Ejemplares similares
-
Support Vector Machine Classification of Major Depressive Disorder Using Diffusion-Weighted Neuroimaging and Graph Theory
por: Sacchet, Matthew D., et al.
Publicado: (2015) -
Accurate splice site prediction using support vector machines
por: Sonnenburg, Sören, et al.
Publicado: (2007) -
Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods
por: Zhao, Shu, et al.
Publicado: (2021) -
Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression
por: Sato, João R., et al.
Publicado: (2015) -
A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF
por: Schneider, Matthias, et al.
Publicado: (2020)