Cargando…
Predicting Autism Spectrum Disorder Using Blood-based Gene Expression Signatures and Machine Learning
OBJECTIVE: The aim of this study was to identify a transcriptomic signature that could be used to classify subjects with autism spectrum disorder (ASD) compared to controls on the basis of blood gene expression profiles. The gene expression profiles could ultimately be used as diagnostic biomarkers...
Autores principales: | Oh, Dong Hoon, Kim, Il Bin, Kim, Seok Hyeon, Ahn, Dong Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean College of Neuropsychopharmacology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290715/ https://www.ncbi.nlm.nih.gov/pubmed/28138110 http://dx.doi.org/10.9758/cpn.2017.15.1.47 |
Ejemplares similares
-
Machine Learning-Based Blood RNA Signature for Diagnosis of Autism Spectrum Disorder
por: Voinsky, Irena, et al.
Publicado: (2023) -
Development of a Machine Learning Algorithm for the Surveillance of Autism Spectrum Disorder
por: Maenner, Matthew J., et al.
Publicado: (2016) -
Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques
por: Qureshi, Muhammad Shuaib, et al.
Publicado: (2023) -
Characteristics and Predictive Value of Blood Transcriptome Signature in Males with Autism Spectrum Disorders
por: Kong, Sek Won, et al.
Publicado: (2012) -
Metabolomic Signatures of Autism Spectrum Disorder
por: Brister, Danielle, et al.
Publicado: (2022)