Cargando…

Subregional structural and connectivity damage in the visual cortex in neuromyelitis optica

Patients with neuromyelitis optica (NMO) have shown structural and functional impairments in the visual cortex. We aimed to characterize subregional grey matter volume (GMV) and resting-state functional connectivity (rsFC) changes in the visual cortex in NMO. Thirty-seven NMO patients and forty-two...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Huanhuan, Zhu, Jiajia, Zhang, Ningnannan, Wang, Qiuhui, Zhang, Chao, Yang, Chunsheng, Sun, Jie, Sun, Xianting, Yang, Li, Yu, Chunshui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291226/
https://www.ncbi.nlm.nih.gov/pubmed/28157198
http://dx.doi.org/10.1038/srep41914
Descripción
Sumario:Patients with neuromyelitis optica (NMO) have shown structural and functional impairments in the visual cortex. We aimed to characterize subregional grey matter volume (GMV) and resting-state functional connectivity (rsFC) changes in the visual cortex in NMO. Thirty-seven NMO patients and forty-two controls underwent structural and functional MRI scans. The GMV and rsFC of each visual subregion were compared between the groups. Compared with controls, NMO patients had GMV reductions in the bilateral V1, V2, V3d, VP, and LO and in the left V3A. In canonical visual pathways, the relatively low-level subregions showed more significant GMV reductions than did the high-level ones. Regardless of GMV correction, NMO patients showed reduced rsFC in the bilateral LO and V4v and in the left V2. The GMVs of the bilateral V1 and LO and of the left V2 and V3d were negatively correlated with clinical disability in NMO patients; these correlation coefficients were associated with hierarchical positions in the visual pathways. These findings suggest that in NMO, the low-level visual subregions have more severe structural damage; structural damage is not the only factor affecting rsFC alterations of visual subregions; GMV reduction in the low-level visual subregions has the highest predictive value for clinical disability.