Cargando…

Suitable indicators using stem diameter variation-derived indices to monitor the water status of greenhouse tomato plants

It is very important to seek a simple nondestructive method to continuously measure plant water status for irrigation scheduling. Changes in stem diameter in response to plant water status and soil water content (SWC) were experimentally investigated during the growing seasons of 2011/2012 and 2012/...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Zhaojiang, Duan, Aiwang, Chen, Deli, Dassanayake, Kithsiri Bandara, Wang, Xiaosen, Liu, Zugui, Liu, Hao, Gao, Shengguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291409/
https://www.ncbi.nlm.nih.gov/pubmed/28158246
http://dx.doi.org/10.1371/journal.pone.0171423
Descripción
Sumario:It is very important to seek a simple nondestructive method to continuously measure plant water status for irrigation scheduling. Changes in stem diameter in response to plant water status and soil water content (SWC) were experimentally investigated during the growing seasons of 2011/2012 and 2012/2013 in pot-cultivated tomato (Lycopersicon esculentum L.) plants in a plastic greenhouse. This study was conducted to determine suitable SDV (stem diameter variation)-derived indices as indicators of tomato plant water status for irrigation scheduling. The experiment was designed as a two-factor randomized block using the SWC and growth stages as variables. The SWC was controlled at 70–80% (well-watered), 60–70% (slightly deficit watered), 50–60% (moderately deficit watered) of the field capacity (FC), and the prescribed growing stages were vegetative, flowering and fruit-forming, and harvesting stages. Regression analysis showed that the SD(6) (the difference between the stem diameter value at 06:00 am and the initial sensor reading) was closely related to the SWC (p<0.01) during rapid vegetative growth, whereas the MDS (the maximum daily shrinkage) was closely related to the SWC (p<0.01) during slow vegetative growth. Our results suggest that SDV-derived indicators can be used for determining plant water status and for scheduling irrigation at different growth/developmental stages.