Cargando…
Learning by stimulation avoidance: A principle to control spiking neural networks dynamics
Learning based on networks of real neurons, and learning based on biologically inspired models of neural networks, have yet to find general learning rules leading to widespread applications. In this paper, we argue for the existence of a principle allowing to steer the dynamics of a biologically ins...
Autores principales: | Sinapayen, Lana, Masumori, Atsushi, Ikegami, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291507/ https://www.ncbi.nlm.nih.gov/pubmed/28158309 http://dx.doi.org/10.1371/journal.pone.0170388 |
Ejemplares similares
-
Reactive, Proactive, and Inductive Agents: An Evolutionary Path for Biological and Artificial Spiking Networks
por: Sinapayen, Lana, et al.
Publicado: (2020) -
Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons
por: Yang, Geunbo, et al.
Publicado: (2023) -
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
por: de Santos-Sierra, Daniel, et al.
Publicado: (2015) -
Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks
por: Allred, Jason M., et al.
Publicado: (2020) -
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
por: Zenke, Friedemann, et al.
Publicado: (2018)