Cargando…
Cerebral microbleeds in a neonatal rat model
BACKGROUND: In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oli...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291518/ https://www.ncbi.nlm.nih.gov/pubmed/28158198 http://dx.doi.org/10.1371/journal.pone.0171163 |
_version_ | 1782504792847810560 |
---|---|
author | Carusillo Theriault, Brianna Woo, Seung Kyoon Karimy, Jason K. Keledjian, Kaspar Stokum, Jesse A. Sarkar, Amrita Coksaygan, Turhan Ivanova, Svetlana Gerzanich, Volodymyr Simard, J. Marc |
author_facet | Carusillo Theriault, Brianna Woo, Seung Kyoon Karimy, Jason K. Keledjian, Kaspar Stokum, Jesse A. Sarkar, Amrita Coksaygan, Turhan Ivanova, Svetlana Gerzanich, Volodymyr Simard, J. Marc |
author_sort | Carusillo Theriault, Brianna |
collection | PubMed |
description | BACKGROUND: In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. METHODS: Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. RESULTS: mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. CONCLUSIONS: In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development. |
format | Online Article Text |
id | pubmed-5291518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52915182017-02-17 Cerebral microbleeds in a neonatal rat model Carusillo Theriault, Brianna Woo, Seung Kyoon Karimy, Jason K. Keledjian, Kaspar Stokum, Jesse A. Sarkar, Amrita Coksaygan, Turhan Ivanova, Svetlana Gerzanich, Volodymyr Simard, J. Marc PLoS One Research Article BACKGROUND: In adult humans, cerebral microbleeds play important roles in neurodegenerative diseases but in neonates, the consequences of cerebral microbleeds are unknown. In rats, a single pro-angiogenic stimulus in utero predisposes to cerebral microbleeds after birth at term, a time when late oligodendrocyte progenitors (pre-oligodendrocytes) dominate in the rat brain. We hypothesized that two independent pro-angiogenic stimuli in utero would be associated with a high likelihood of perinatal microbleeds that would be severely damaging to white matter. METHODS: Pregnant Wistar rats were subjected to intrauterine ischemia (IUI) and low-dose maternal lipopolysaccharide (mLPS) at embryonic day (E) 19. Pups were born vaginally or abdominally at E21-22. Brains were evaluated for angiogenic markers, microhemorrhages, myelination and axonal development. Neurological function was assessed out to 6 weeks. RESULTS: mRNA (Vegf, Cd31, Mmp2, Mmp9, Timp1, Timp2) and protein (CD31, MMP2, MMP9) for angiogenic markers, in situ proteolytic activity, and collagen IV immunoreactivity were altered, consistent with an angiogenic response. Vaginally delivered pups exposed to prenatal IUI+mLPS had spontaneous cerebral microbleeds, abnormal neurological function, and dysmorphic, hypomyelinated white matter and axonopathy. Pups exposed to the same pro-angiogenic stimuli in utero but delivered abdominally had minimal cerebral microbleeds, preserved myelination and axonal development, and neurological function similar to naïve controls. CONCLUSIONS: In rats, pro-angiogenic stimuli in utero can predispose to vascular fragility and lead to cerebral microbleeds. The study of microbleeds in the neonatal rat brain at full gestation may give insights into the consequences of microbleeds in human preterm infants during critical periods of white matter development. Public Library of Science 2017-02-03 /pmc/articles/PMC5291518/ /pubmed/28158198 http://dx.doi.org/10.1371/journal.pone.0171163 Text en © 2017 Carusillo Theriault et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Carusillo Theriault, Brianna Woo, Seung Kyoon Karimy, Jason K. Keledjian, Kaspar Stokum, Jesse A. Sarkar, Amrita Coksaygan, Turhan Ivanova, Svetlana Gerzanich, Volodymyr Simard, J. Marc Cerebral microbleeds in a neonatal rat model |
title | Cerebral microbleeds in a neonatal rat model |
title_full | Cerebral microbleeds in a neonatal rat model |
title_fullStr | Cerebral microbleeds in a neonatal rat model |
title_full_unstemmed | Cerebral microbleeds in a neonatal rat model |
title_short | Cerebral microbleeds in a neonatal rat model |
title_sort | cerebral microbleeds in a neonatal rat model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291518/ https://www.ncbi.nlm.nih.gov/pubmed/28158198 http://dx.doi.org/10.1371/journal.pone.0171163 |
work_keys_str_mv | AT carusillotheriaultbrianna cerebralmicrobleedsinaneonatalratmodel AT wooseungkyoon cerebralmicrobleedsinaneonatalratmodel AT karimyjasonk cerebralmicrobleedsinaneonatalratmodel AT keledjiankaspar cerebralmicrobleedsinaneonatalratmodel AT stokumjessea cerebralmicrobleedsinaneonatalratmodel AT sarkaramrita cerebralmicrobleedsinaneonatalratmodel AT coksayganturhan cerebralmicrobleedsinaneonatalratmodel AT ivanovasvetlana cerebralmicrobleedsinaneonatalratmodel AT gerzanichvolodymyr cerebralmicrobleedsinaneonatalratmodel AT simardjmarc cerebralmicrobleedsinaneonatalratmodel |