Cargando…
Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7)
A major area of interest in condensed matter physics is the way electrons in correlated electron materials can self-organize into ordered states, and a particularly intriguing possibility is that they spontaneously choose a preferred direction of conduction. The correlated electron metal Sr(3)Ru(2)O...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291698/ https://www.ncbi.nlm.nih.gov/pubmed/28168216 http://dx.doi.org/10.1126/sciadv.1501804 |
_version_ | 1782504822510977024 |
---|---|
author | Brodsky, Daniel O. Barber, Mark E. Bruin, Jan A. N. Borzi, Rodolfo A. Grigera, Santiago A. Perry, Robin S. Mackenzie, Andrew P. Hicks, Clifford W. |
author_facet | Brodsky, Daniel O. Barber, Mark E. Bruin, Jan A. N. Borzi, Rodolfo A. Grigera, Santiago A. Perry, Robin S. Mackenzie, Andrew P. Hicks, Clifford W. |
author_sort | Brodsky, Daniel O. |
collection | PubMed |
description | A major area of interest in condensed matter physics is the way electrons in correlated electron materials can self-organize into ordered states, and a particularly intriguing possibility is that they spontaneously choose a preferred direction of conduction. The correlated electron metal Sr(3)Ru(2)O(7) has an anomalous phase at low temperatures that features strong susceptibility toward anisotropic transport. This susceptibility has been thought to indicate a spontaneous anisotropy, that is, electronic order that spontaneously breaks the point-group symmetry of the lattice, allowing weak external stimuli to select the orientation of the anisotropy. We investigate further by studying the response of Sr(3)Ru(2)O(7) in the region of phase formation to two fields that lift the native tetragonal symmetry of the lattice: in-plane magnetic field and orthorhombic lattice distortion through uniaxial pressure. The response to uniaxial pressure is surprisingly strong: Compressing the lattice by ~0.1% induces an approximately 100% transport anisotropy. However, neither the in-plane field nor the pressure phase diagrams are qualitatively consistent with spontaneous symmetry reduction. Instead, both are consistent with a multicomponent order parameter that is likely to preserve the point-group symmetry of the lattice, but is highly susceptible to perturbation. |
format | Online Article Text |
id | pubmed-5291698 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52916982017-02-06 Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) Brodsky, Daniel O. Barber, Mark E. Bruin, Jan A. N. Borzi, Rodolfo A. Grigera, Santiago A. Perry, Robin S. Mackenzie, Andrew P. Hicks, Clifford W. Sci Adv Research Articles A major area of interest in condensed matter physics is the way electrons in correlated electron materials can self-organize into ordered states, and a particularly intriguing possibility is that they spontaneously choose a preferred direction of conduction. The correlated electron metal Sr(3)Ru(2)O(7) has an anomalous phase at low temperatures that features strong susceptibility toward anisotropic transport. This susceptibility has been thought to indicate a spontaneous anisotropy, that is, electronic order that spontaneously breaks the point-group symmetry of the lattice, allowing weak external stimuli to select the orientation of the anisotropy. We investigate further by studying the response of Sr(3)Ru(2)O(7) in the region of phase formation to two fields that lift the native tetragonal symmetry of the lattice: in-plane magnetic field and orthorhombic lattice distortion through uniaxial pressure. The response to uniaxial pressure is surprisingly strong: Compressing the lattice by ~0.1% induces an approximately 100% transport anisotropy. However, neither the in-plane field nor the pressure phase diagrams are qualitatively consistent with spontaneous symmetry reduction. Instead, both are consistent with a multicomponent order parameter that is likely to preserve the point-group symmetry of the lattice, but is highly susceptible to perturbation. American Association for the Advancement of Science 2017-02-03 /pmc/articles/PMC5291698/ /pubmed/28168216 http://dx.doi.org/10.1126/sciadv.1501804 Text en Copyright © 2017, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Brodsky, Daniel O. Barber, Mark E. Bruin, Jan A. N. Borzi, Rodolfo A. Grigera, Santiago A. Perry, Robin S. Mackenzie, Andrew P. Hicks, Clifford W. Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title | Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title_full | Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title_fullStr | Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title_full_unstemmed | Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title_short | Strain and vector magnetic field tuning of the anomalous phase in Sr(3)Ru(2)O(7) |
title_sort | strain and vector magnetic field tuning of the anomalous phase in sr(3)ru(2)o(7) |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291698/ https://www.ncbi.nlm.nih.gov/pubmed/28168216 http://dx.doi.org/10.1126/sciadv.1501804 |
work_keys_str_mv | AT brodskydanielo strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT barbermarke strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT bruinjanan strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT borzirodolfoa strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT grigerasantiagoa strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT perryrobins strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT mackenzieandrewp strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 AT hickscliffordw strainandvectormagneticfieldtuningoftheanomalousphaseinsr3ru2o7 |