Cargando…

Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy

Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell–cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in...

Descripción completa

Detalles Bibliográficos
Autores principales: Tomasetti, Marco, Lee, Wan, Santarelli, Lory, Neuzil, Jiri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291842/
https://www.ncbi.nlm.nih.gov/pubmed/28104913
http://dx.doi.org/10.1038/emm.2016.153
Descripción
Sumario:Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell–cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.