Cargando…
Multivariate search for differentially expressed gene combinations
BACKGROUND: To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sampl...
Autores principales: | Xiao, Yuanhui, Frisina, Robert, Gordon, Alexander, Klebanov, Lev, Yakovlev, Andrei |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC529250/ https://www.ncbi.nlm.nih.gov/pubmed/15507138 http://dx.doi.org/10.1186/1471-2105-5-164 |
Ejemplares similares
-
Assessing stability of gene selection in microarray data analysis
por: Qiu, Xing, et al.
Publicado: (2006) -
The effects of normalization on the correlation structure of microarray data
por: Qiu, Xing, et al.
Publicado: (2005) -
A nitty-gritty aspect of correlation and network inference from gene expression data
por: Klebanov, Lev B, et al.
Publicado: (2008) -
Revisiting adverse effects of cross-hybridization in Affymetrix gene expression data: do they matter for correlation analysis?
por: Klebanov, Lev, et al.
Publicado: (2007) -
Detecting multivariate differentially expressed genes
por: Nilsson, Roland, et al.
Publicado: (2007)