Cargando…
Effect of Experimentally-Induced Trunk Muscular Tensions on the Sit-to-Stand Task Performance and Associated Postural Adjustments
It has been shown that increased muscular activity along the trunk is likely to impair body balance, but there is little knowledge about its consequences on more dynamic tasks. The purpose of this study was to determine the effect of unilateral and bilateral increases of muscular tension along the t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292582/ https://www.ncbi.nlm.nih.gov/pubmed/28220064 http://dx.doi.org/10.3389/fnhum.2017.00032 |
Sumario: | It has been shown that increased muscular activity along the trunk is likely to impair body balance, but there is little knowledge about its consequences on more dynamic tasks. The purpose of this study was to determine the effect of unilateral and bilateral increases of muscular tension along the trunk on the sit-to-stand task (STS) performance and associated anticipatory postural adjustments (APAs). Twelve healthy females (23 ± 3 years, 163 ± 0.06 cm, 56 ± 9 kg), free of any neurological or musculoskeletal disorders, performed six trials of the STS at maximum speed, in seven experimental conditions varying the muscular tension along each side of the trunk, using a specific bimanual compressive load paradigm. A six-channel force plate was used to calculate the coordinates of the center of pressure (CP) along the anterior-posterior and medial-lateral axes, and the kinematics of the head, spine and pelvis, were estimated using three pairs of uni-axial accelerometers. The postural and focal components of the task were assessed using three biomechanical parameters calculated from CP signals: the duration and magnitude of APAs, and the duration of focal movement (dFM). Results showed that beyond a given level, higher muscular tension along the trunk results in longer APAs, but with a stable duration of the focal movement. In addition, no significant variation of APAs and FM parameters was found between bilateral and unilateral increases of muscular tension. It was suggested that restricted mobility due to higher muscular tension along the trunk requires an adaptation of the programming of APAs to keep the same level of performance in the STS task. These findings may have implications in treatment strategies aimed at preserving functional autonomy in pathologies including a rise of muscular tension. |
---|