Cargando…

Relationship between auxiliary gamma subunits and mallotoxin on BK channel modulation

The large-conductance, calcium- and voltage-activated K(+)(BK) channel consists of the pore-forming α subunits (BKα) and auxiliary subunits. The auxiliary γ1-3 subunits potently modulate the BK channel by shifting its voltage-dependence of channel activation toward the hyperpolarizing direction by a...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Xin, Li, Qin, Yan, Jiusheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292707/
https://www.ncbi.nlm.nih.gov/pubmed/28165042
http://dx.doi.org/10.1038/srep42240
Descripción
Sumario:The large-conductance, calcium- and voltage-activated K(+)(BK) channel consists of the pore-forming α subunits (BKα) and auxiliary subunits. The auxiliary γ1-3 subunits potently modulate the BK channel by shifting its voltage-dependence of channel activation toward the hyperpolarizing direction by approximately 145 mV (γ1), 100 mV (γ2), and 50 mV (γ3). Mallotoxin is a potent small-molecule BK channel activator. We analyzed the relationship between mallotoxin and the γ subunits in their BK channel-activating effects in membrane patches excised from HEK-293 cells. We found that mallotoxin, when applied extracellularly, shifted the half-activation voltage (V(1/2)) of BKα channels by −72 mV. The channel-activating effect of mallotoxin was greatly attenuated in the presence of the γ1, γ2, or γ3 subunit, with resultant ΔV(1/2 (+/− mallotoxin)) values of −9, −28, or −15 mV, respectively. Most examined γ1 mutant subunits antagonized mallotoxin’s channel-activating effect in a manner that was largely dependent on its own modulatory function. However, mallotoxin caused an irreversible functional and structural disengagement of the γ1-F273S mutant from BK channels. We infer that the auxiliary γ subunit effectively interferes with mallotoxin on BK channel modulation via either a direct steric competition or an indirect allosteric influence on mallotoxin’s binding and action on BKα.