Cargando…
Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries
The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292714/ https://www.ncbi.nlm.nih.gov/pubmed/28165041 http://dx.doi.org/10.1038/srep42238 |
Sumario: | The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm(2)/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. |
---|