Cargando…

Microbial Typing by Machine Learned DNA Melt Signatures

There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) regi...

Descripción completa

Detalles Bibliográficos
Autores principales: Andini, Nadya, Wang, Bo, Athamanolap, Pornpat, Hardick, Justin, Masek, Billie J., Thair, Simone, Hu, Anne, Avornu, Gideon, Peterson, Stephen, Cogill, Steven, Rothman, Richard E., Carroll, Karen C., Gaydos, Charlotte A., Wang, Jeff Tza-Huei, Batzoglou, Serafim, Yang, Samuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/
https://www.ncbi.nlm.nih.gov/pubmed/28165067
http://dx.doi.org/10.1038/srep42097
_version_ 1782504977832345600
author Andini, Nadya
Wang, Bo
Athamanolap, Pornpat
Hardick, Justin
Masek, Billie J.
Thair, Simone
Hu, Anne
Avornu, Gideon
Peterson, Stephen
Cogill, Steven
Rothman, Richard E.
Carroll, Karen C.
Gaydos, Charlotte A.
Wang, Jeff Tza-Huei
Batzoglou, Serafim
Yang, Samuel
author_facet Andini, Nadya
Wang, Bo
Athamanolap, Pornpat
Hardick, Justin
Masek, Billie J.
Thair, Simone
Hu, Anne
Avornu, Gideon
Peterson, Stephen
Cogill, Steven
Rothman, Richard E.
Carroll, Karen C.
Gaydos, Charlotte A.
Wang, Jeff Tza-Huei
Batzoglou, Serafim
Yang, Samuel
author_sort Andini, Nadya
collection PubMed
description There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption.
format Online
Article
Text
id pubmed-5292719
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52927192017-02-10 Microbial Typing by Machine Learned DNA Melt Signatures Andini, Nadya Wang, Bo Athamanolap, Pornpat Hardick, Justin Masek, Billie J. Thair, Simone Hu, Anne Avornu, Gideon Peterson, Stephen Cogill, Steven Rothman, Richard E. Carroll, Karen C. Gaydos, Charlotte A. Wang, Jeff Tza-Huei Batzoglou, Serafim Yang, Samuel Sci Rep Article There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption. Nature Publishing Group 2017-02-06 /pmc/articles/PMC5292719/ /pubmed/28165067 http://dx.doi.org/10.1038/srep42097 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Andini, Nadya
Wang, Bo
Athamanolap, Pornpat
Hardick, Justin
Masek, Billie J.
Thair, Simone
Hu, Anne
Avornu, Gideon
Peterson, Stephen
Cogill, Steven
Rothman, Richard E.
Carroll, Karen C.
Gaydos, Charlotte A.
Wang, Jeff Tza-Huei
Batzoglou, Serafim
Yang, Samuel
Microbial Typing by Machine Learned DNA Melt Signatures
title Microbial Typing by Machine Learned DNA Melt Signatures
title_full Microbial Typing by Machine Learned DNA Melt Signatures
title_fullStr Microbial Typing by Machine Learned DNA Melt Signatures
title_full_unstemmed Microbial Typing by Machine Learned DNA Melt Signatures
title_short Microbial Typing by Machine Learned DNA Melt Signatures
title_sort microbial typing by machine learned dna melt signatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/
https://www.ncbi.nlm.nih.gov/pubmed/28165067
http://dx.doi.org/10.1038/srep42097
work_keys_str_mv AT andininadya microbialtypingbymachinelearneddnameltsignatures
AT wangbo microbialtypingbymachinelearneddnameltsignatures
AT athamanolappornpat microbialtypingbymachinelearneddnameltsignatures
AT hardickjustin microbialtypingbymachinelearneddnameltsignatures
AT masekbilliej microbialtypingbymachinelearneddnameltsignatures
AT thairsimone microbialtypingbymachinelearneddnameltsignatures
AT huanne microbialtypingbymachinelearneddnameltsignatures
AT avornugideon microbialtypingbymachinelearneddnameltsignatures
AT petersonstephen microbialtypingbymachinelearneddnameltsignatures
AT cogillsteven microbialtypingbymachinelearneddnameltsignatures
AT rothmanricharde microbialtypingbymachinelearneddnameltsignatures
AT carrollkarenc microbialtypingbymachinelearneddnameltsignatures
AT gaydoscharlottea microbialtypingbymachinelearneddnameltsignatures
AT wangjefftzahuei microbialtypingbymachinelearneddnameltsignatures
AT batzoglouserafim microbialtypingbymachinelearneddnameltsignatures
AT yangsamuel microbialtypingbymachinelearneddnameltsignatures