Cargando…
Microbial Typing by Machine Learned DNA Melt Signatures
There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) regi...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/ https://www.ncbi.nlm.nih.gov/pubmed/28165067 http://dx.doi.org/10.1038/srep42097 |
_version_ | 1782504977832345600 |
---|---|
author | Andini, Nadya Wang, Bo Athamanolap, Pornpat Hardick, Justin Masek, Billie J. Thair, Simone Hu, Anne Avornu, Gideon Peterson, Stephen Cogill, Steven Rothman, Richard E. Carroll, Karen C. Gaydos, Charlotte A. Wang, Jeff Tza-Huei Batzoglou, Serafim Yang, Samuel |
author_facet | Andini, Nadya Wang, Bo Athamanolap, Pornpat Hardick, Justin Masek, Billie J. Thair, Simone Hu, Anne Avornu, Gideon Peterson, Stephen Cogill, Steven Rothman, Richard E. Carroll, Karen C. Gaydos, Charlotte A. Wang, Jeff Tza-Huei Batzoglou, Serafim Yang, Samuel |
author_sort | Andini, Nadya |
collection | PubMed |
description | There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption. |
format | Online Article Text |
id | pubmed-5292719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52927192017-02-10 Microbial Typing by Machine Learned DNA Melt Signatures Andini, Nadya Wang, Bo Athamanolap, Pornpat Hardick, Justin Masek, Billie J. Thair, Simone Hu, Anne Avornu, Gideon Peterson, Stephen Cogill, Steven Rothman, Richard E. Carroll, Karen C. Gaydos, Charlotte A. Wang, Jeff Tza-Huei Batzoglou, Serafim Yang, Samuel Sci Rep Article There is still an ongoing demand for a simple broad-spectrum molecular diagnostic assay for pathogenic bacteria. For this purpose, we developed a single-plex High Resolution Melt (HRM) assay that generates complex melt curves for bacterial identification. Using internal transcribed spacer (ITS) region as the phylogenetic marker for HRM, we observed complex melt curve signatures as compared to 16S rDNA amplicons with enhanced interspecies discrimination. We also developed a novel Naïve Bayes curve classification algorithm with statistical interpretation and achieved 95% accuracy in differentiating 89 bacterial species in our library using leave-one-out cross-validation. Pilot clinical validation of our method correctly identified the etiologic organisms at the species-level in 59 culture-positive mono-bacterial blood culture samples with 90% accuracy. Our findings suggest that broad bacterial sequences may be simply, reliably and automatically profiled by ITS HRM assay for clinical adoption. Nature Publishing Group 2017-02-06 /pmc/articles/PMC5292719/ /pubmed/28165067 http://dx.doi.org/10.1038/srep42097 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Andini, Nadya Wang, Bo Athamanolap, Pornpat Hardick, Justin Masek, Billie J. Thair, Simone Hu, Anne Avornu, Gideon Peterson, Stephen Cogill, Steven Rothman, Richard E. Carroll, Karen C. Gaydos, Charlotte A. Wang, Jeff Tza-Huei Batzoglou, Serafim Yang, Samuel Microbial Typing by Machine Learned DNA Melt Signatures |
title | Microbial Typing by Machine Learned DNA Melt Signatures |
title_full | Microbial Typing by Machine Learned DNA Melt Signatures |
title_fullStr | Microbial Typing by Machine Learned DNA Melt Signatures |
title_full_unstemmed | Microbial Typing by Machine Learned DNA Melt Signatures |
title_short | Microbial Typing by Machine Learned DNA Melt Signatures |
title_sort | microbial typing by machine learned dna melt signatures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292719/ https://www.ncbi.nlm.nih.gov/pubmed/28165067 http://dx.doi.org/10.1038/srep42097 |
work_keys_str_mv | AT andininadya microbialtypingbymachinelearneddnameltsignatures AT wangbo microbialtypingbymachinelearneddnameltsignatures AT athamanolappornpat microbialtypingbymachinelearneddnameltsignatures AT hardickjustin microbialtypingbymachinelearneddnameltsignatures AT masekbilliej microbialtypingbymachinelearneddnameltsignatures AT thairsimone microbialtypingbymachinelearneddnameltsignatures AT huanne microbialtypingbymachinelearneddnameltsignatures AT avornugideon microbialtypingbymachinelearneddnameltsignatures AT petersonstephen microbialtypingbymachinelearneddnameltsignatures AT cogillsteven microbialtypingbymachinelearneddnameltsignatures AT rothmanricharde microbialtypingbymachinelearneddnameltsignatures AT carrollkarenc microbialtypingbymachinelearneddnameltsignatures AT gaydoscharlottea microbialtypingbymachinelearneddnameltsignatures AT wangjefftzahuei microbialtypingbymachinelearneddnameltsignatures AT batzoglouserafim microbialtypingbymachinelearneddnameltsignatures AT yangsamuel microbialtypingbymachinelearneddnameltsignatures |