Cargando…
Multi-Instance Metric Transfer Learning for Genome-Wide Protein Function Prediction
Multi-Instance (MI) learning has been proven to be effective for the genome-wide protein function prediction problems where each training example is associated with multiple instances. Many studies in this literature attempted to find an appropriate Multi-Instance Learning (MIL) method for genome-wi...
Autores principales: | Xu, Yonghui, Min, Huaqing, Wu, Qingyao, Song, Hengjie, Ye, Bicui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292966/ https://www.ncbi.nlm.nih.gov/pubmed/28165495 http://dx.doi.org/10.1038/srep41831 |
Ejemplares similares
-
AdaBoost Based Multi-Instance Transfer Learning for Predicting Proteome-Wide Interactions between Salmonella and Human Proteins
por: Mei, Suyu, et al.
Publicado: (2014) -
Multi-Instance Multilabel Learning with Weak-Label for Predicting Protein Function in Electricigens
por: Wu, Jian-Sheng, et al.
Publicado: (2015) -
Localized instance fusion of MRI data of Alzheimer’s disease for classification based on instance transfer ensemble learning
por: Tan, Xiaoheng, et al.
Publicado: (2018) -
Gene function prediction based on combining gene ontology hierarchy with multi-instance multi-label learning
por: Li, Zejun, et al.
Publicado: (2018) -
Instance Transfer Learning with Multisource Dynamic TrAdaBoost
por: Zhang, Qian, et al.
Publicado: (2014)