Cargando…
Disaggregating asthma: Big investigation versus big data
We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, “big data” has been sold as a panacea for generating hypotheses and drivi...
Autores principales: | Belgrave, Danielle, Henderson, John, Simpson, Angela, Buchan, Iain, Bishop, Christopher, Custovic, Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mosby
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5292995/ https://www.ncbi.nlm.nih.gov/pubmed/27871876 http://dx.doi.org/10.1016/j.jaci.2016.11.003 |
Ejemplares similares
-
Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies
por: Belgrave, Danielle C. M., et al.
Publicado: (2014) -
Atopic Dermatitis and Respiratory Allergy: What is the Link
por: Belgrave, Danielle C. M., et al.
Publicado: (2015) -
The Study Team for Early Life Asthma Research (STELAR) consortium ‘Asthma e-lab’: team science bringing data, methods and investigators together
por: Custovic, Adnan, et al.
Publicado: (2015) -
Challenges in interpreting allergen microarrays in relation to clinical symptoms: A machine learning approach
por: Prosperi, Mattia C F, et al.
Publicado: (2014) -
Ecology's Big, Hot Idea
por: Whitfield, John
Publicado: (2004)