Cargando…

A living vector field reveals constraints on galactose network induction in yeast

When a cell encounters a new environment, its transcriptional response can be constrained by its history. For example, yeast cells in galactose induce GAL genes with a speed and unanimity that depends on previous nutrient conditions. Cellular memory of long‐term glucose exposure delays GAL induction...

Descripción completa

Detalles Bibliográficos
Autores principales: Stockwell, Sarah R, Rifkin, Scott A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293160/
https://www.ncbi.nlm.nih.gov/pubmed/28137775
http://dx.doi.org/10.15252/msb.20167323
Descripción
Sumario:When a cell encounters a new environment, its transcriptional response can be constrained by its history. For example, yeast cells in galactose induce GAL genes with a speed and unanimity that depends on previous nutrient conditions. Cellular memory of long‐term glucose exposure delays GAL induction and makes it highly variable with in a cell population, while other nutrient histories lead to rapid, uniform responses. To investigate how cell‐level gene expression dynamics produce population‐level phenotypes, we built living vector fields from thousands of single‐cell time courses of the proteins Gal3p and Gal1p as cells switched to galactose from various nutrient histories. We show that, after sustained glucose exposure, the lack of these GAL transducers leads to induction delays that are long but also variable; that cellular resources constrain induction; and that bimodally distributed expression levels arise from lineage selection—a subpopulation of cells induces more quickly and outcompetes the rest. Our results illuminate cellular memory in this important model system and illustrate how resources and randomness interact to shape the response of a population to a new environment.