Cargando…
Reward-based training of recurrent neural networks for cognitive and value-based tasks
Trained neural network models, which exhibit features of neural activity recorded from behaving animals, may provide insights into the circuit mechanisms of cognitive functions through systematic analysis of network activity and connectivity. However, in contrast to the graded error signals commonly...
Autores principales: | Song, H Francis, Yang, Guangyu R, Wang, Xiao-Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293493/ https://www.ncbi.nlm.nih.gov/pubmed/28084991 http://dx.doi.org/10.7554/eLife.21492 |
Ejemplares similares
Ejemplares similares
-
Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework
por: Song, H. Francis, et al.
Publicado: (2016) -
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
por: Jia, Shuncheng, et al.
Publicado: (2021) -
Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies
por: Soo, Wayne W.M., et al.
Publicado: (2023) -
RM-SORN: a reward-modulated self-organizing recurrent neural network
por: Aswolinskiy, Witali, et al.
Publicado: (2015) -
Value and reward based learning in neurorobots
por: Krichmar, Jeffrey L., et al.
Publicado: (2013)