Cargando…
A Self-Balancing Nanovolt Potentiometric System for Thermometry and Calorimetry
The principle of a self-balancing potentiometric system is described. The principle is applied to the modification of an existing manually operated thermo-free, low voltage potentiometer consisting of Diesselhorst ring elements. The modification involves the addition of reed relays which enable the...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
[Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology
1976
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293534/ https://www.ncbi.nlm.nih.gov/pubmed/32196289 http://dx.doi.org/10.6028/jres.080A.067 |
Sumario: | The principle of a self-balancing potentiometric system is described. The principle is applied to the modification of an existing manually operated thermo-free, low voltage potentiometer consisting of Diesselhorst ring elements. The modification involves the addition of reed relays which enable the potentiometer voltage to be set by digital signals. By incorporating a digital voltmeter, or an analog-to-digital converter, and a nanovolt amplifier with the modified potentiometer, self-balancing of the potentiometer may be achieved through either hardware logic implementation or direct digital control from a minicomputer. The resolution of this self-balancing potentiometric system for a full scale input of 100 mV is about one to 10 parts in 10(8). With real-time digital processing of the data, resolution of about 1 nV or better has been achieved for slowly changing input signals. The overall accuracy of the system is better than 10 ppm for voltage measurements and about 1 ppm for voltage ratio or resistance measurements. |
---|