Cargando…

A Self-Balancing Nanovolt Potentiometric System for Thermometry and Calorimetry

The principle of a self-balancing potentiometric system is described. The principle is applied to the modification of an existing manually operated thermo-free, low voltage potentiometer consisting of Diesselhorst ring elements. The modification involves the addition of reed relays which enable the...

Descripción completa

Detalles Bibliográficos
Autor principal: Chang, Shu-Sing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: [Gaithersburg, MD] : U.S. Dept. of Commerce, National Institute of Standards and Technology 1976
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293534/
https://www.ncbi.nlm.nih.gov/pubmed/32196289
http://dx.doi.org/10.6028/jres.080A.067
Descripción
Sumario:The principle of a self-balancing potentiometric system is described. The principle is applied to the modification of an existing manually operated thermo-free, low voltage potentiometer consisting of Diesselhorst ring elements. The modification involves the addition of reed relays which enable the potentiometer voltage to be set by digital signals. By incorporating a digital voltmeter, or an analog-to-digital converter, and a nanovolt amplifier with the modified potentiometer, self-balancing of the potentiometer may be achieved through either hardware logic implementation or direct digital control from a minicomputer. The resolution of this self-balancing potentiometric system for a full scale input of 100 mV is about one to 10 parts in 10(8). With real-time digital processing of the data, resolution of about 1 nV or better has been achieved for slowly changing input signals. The overall accuracy of the system is better than 10 ppm for voltage measurements and about 1 ppm for voltage ratio or resistance measurements.