Cargando…
Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference t...
Autores principales: | Narimani, Zahra, Beigy, Hamid, Ahmad, Ashar, Masoudi-Nejad, Ali, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293552/ https://www.ncbi.nlm.nih.gov/pubmed/28166542 http://dx.doi.org/10.1371/journal.pone.0171240 |
Ejemplares similares
-
Inferring propagation paths for sparsely observed perturbations on complex networks
por: Massucci, Francesco Alessandro, et al.
Publicado: (2016) -
Expectancy-based rhythmic entrainment as continuous Bayesian inference
por: Cannon, Jonathan
Publicado: (2021) -
Reconstruction of an Integrated Genome-Scale Co-Expression Network Reveals Key Modules Involved in Lung Adenocarcinoma
por: Bidkhori, Gholamreza, et al.
Publicado: (2013) -
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012) -
Genome-Scale Co-Expression Network Comparison across Escherichia coli and Salmonella enterica Serovar Typhimurium Reveals Significant Conservation at the Regulon Level of Local Regulators Despite Their Dissimilar Lifestyles
por: Zarrineh, Peyman, et al.
Publicado: (2014)