Cargando…

Heterogeneity of tumor cells in terms of cancer-initiating cells

Tumors derive from a single cell clone but consist of heterogeneous cell subpopulations with diverse features and functions. A limited number of subclones with a selective advantage can initiate tumors when inoculated into immunocompromised mice, and are called cancer-initiating cells (CICs). CICs c...

Descripción completa

Detalles Bibliográficos
Autor principal: Morii, Eiichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Toxicologic Pathology 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293686/
https://www.ncbi.nlm.nih.gov/pubmed/28190919
http://dx.doi.org/10.1293/tox.2016-0056
Descripción
Sumario:Tumors derive from a single cell clone but consist of heterogeneous cell subpopulations with diverse features and functions. A limited number of subclones with a selective advantage can initiate tumors when inoculated into immunocompromised mice, and are called cancer-initiating cells (CICs). CICs can be isolated from the bulk of tumors on the basis of their characteristics, such as high reagent efflux, degradation of reactive oxygen species, and aldehyde dehydrogenase (ALDH) activity. Under normal conditions, new CICs are produced by existing CICs rather than non-CICs. However, under stress conditions, non-CICs can occasionally produce CICs, a phenomenon known as plasticity. The dynamic exchange between CICs and non-CICs may enable tumors to survive under unfavorable conditions. CICs are located in a small portion of tumors. This suggests that microenvironmental factors induce or inhibit the CIC phenotype, which might be regulated by intercellular signaling between tumor cells. This review describes isolation of CICs from tumor cell populations and the microenvironmental factors that regulate CIC phenotypes in uterine cancer and lymphoma.