Cargando…
Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels....
Autores principales: | Naveros, Francisco, Garrido, Jesus A., Carrillo, Richard R., Ros, Eduardo, Luque, Niceto R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293783/ https://www.ncbi.nlm.nih.gov/pubmed/28223930 http://dx.doi.org/10.3389/fninf.2017.00007 |
Ejemplares similares
-
Corrigendum: Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
por: Naveros, Francisco, et al.
Publicado: (2018) -
CPU-GPU hybrid platform for efficient spiking neural-network simulation
por: Naveros, Francisco, et al.
Publicado: (2013) -
Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
por: Luque, Niceto R., et al.
Publicado: (2016) -
Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation
por: Luque, Niceto R., et al.
Publicado: (2019) -
A Metric for Evaluating Neural Input Representation in Supervised Learning Networks
por: Carrillo, Richard R., et al.
Publicado: (2018)