Cargando…

SLC12A3 variants modulate LDL cholesterol levels in the Mongolian population

BACKGROUND: Abnormalities in lipid metabolism are crucial factors in the pathogenesis of cardiovascular disease (CVD). Variants of many genes have been verified to confer risk for lipid metabolism abnormalities. However, the relationship between genetic variants of the NCC-encoding SLC12A3 gene and...

Descripción completa

Detalles Bibliográficos
Autores principales: An, Caiyan, Zhang, Kejin, Su, Xiulan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294767/
https://www.ncbi.nlm.nih.gov/pubmed/28166833
http://dx.doi.org/10.1186/s12944-017-0413-x
Descripción
Sumario:BACKGROUND: Abnormalities in lipid metabolism are crucial factors in the pathogenesis of cardiovascular disease (CVD). Variants of many genes have been verified to confer risk for lipid metabolism abnormalities. However, the relationship between genetic variants of the NCC-encoding SLC12A3 gene and lipid metabolism in the Mongolian population remains unclear. In the present study, we aimed to elucidate the effects of SLC12A3 variants on Mongolian lipid metabolism, including total cholesterol (TCHO), triglycerides (TG), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c). METHODS: A randomly selected population of Mongolians (n = 331) from China underwent clinical testing. An ANOVA test, Kruskal-Wallis H test (K-W test) and haplotype analysis were used to evaluate the association between the levels of lipids (TCHO, TG, LDL-c, and HDL-c) and polymorphisms in SLC12A3 loci. RESULTS: We identified three single nucleotide polymorphisms (SNPs) rs5803, rs2010501 and rs711746 in the SLC12A3 gene that were significantly associated with an individual’s serum LDL-c level. Haplotypes combining these SNPs also showed the same trend (all p values < 0.01). Furthermore, the influence of SLC12A3 genetic polymorphisms on differences in individual serum LDL-c levels remained significant, even after we controlled gender, and demographic and other non-genetic factors. CONCLUSION: These results suggest that variants of the SLC12A3 gene confer susceptibility to the abnormal serum LDL-c level in the Mongolian population.